• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    Enhanced Neural Network-Based Univariate Time-Series Forecasting Model for Big Data

    Autor: 
    Namasudra, Suyel
    ;
    Dhamodharavadhani, S.
    ;
    Rathipriya, R.
    ;
    González-Crespo, Rubén
    ;
    Moparthi, Nageswara Rao
    Fecha: 
    2024
    Palabra clave: 
    health care data; layer recurrent neural network; nonlinear autoregressive neural network; statistical measure-based data trust method; JCR
    Revista / editorial: 
    Big Data
    Citación: 
    Suyel Namasudra, S. Dhamodharavadhani, R. Rathipriya, Ruben Gonzalez Crespo, and Nageswara Rao Moparthi. Enhanced Neural Network-Based Univariate Time-Series Forecasting Model for Big Data. Big Data.ahead of printhttp://doi.org/10.1089/big.2022.0155
    Tipo de Ítem: 
    Articulo Revista Indexada
    URI: 
    https://reunir.unir.net/handle/123456789/15001
    DOI: 
    https://doi.org/10.1089/big.2022.0155
    Dirección web: 
    https://www.liebertpub.com/doi/10.1089/big.2022.0155
    Resumen:
    Big data is a combination of large structured, semistructured, and unstructured data collected from various sources that must be processed before using them in many analytical applications. Anomalies or inconsistencies in big data refer to the occurrences of some data that are in some way unusual and do not fit the general patterns. It is considered one of the major problems of big data. Data trust method (DTM) is a technique used to identify and replace anomaly or untrustworthy data using the interpolation method. This article discusses the DTM used for univariate time series (UTS) forecasting algorithms for big data, which is considered the preprocessing approach by using a neural network (NN) model. In this work, DTM is the combination of statistical-based untrustworthy data detection method and statistical-based untrustworthy data replacement method, and it is used to improve the forecast quality of UTS. In this study, an enhanced NN model has been proposed for big data that incorporates DTMs with the NN-based UTS forecasting model. The coefficient variance root mean squared error is utilized as the main characteristic indicator in the proposed work to choose the best UTS data for model development. The results show the effectiveness of the proposed method as it can improve the prediction process by determining and replacing the untrustworthy big data.
    Mostrar el registro completo del ítem
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    20
    70
    62
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Introduction to the special section on advances of machine learning in cybersecurity (VSI-mlsec) 

      Namasudra, Suyel; González-Crespo, Rubén ; Kumar, Sathish (Computers and Electrical Engineering, 2022)
      With the rapid advancement of emerging technologies, such as Internet of Things (IoT), cloud computing, and many more, a huge amount of data is generated and processed in daily life. As these technologies are based on the ...
    • Blockchain-Based Medical Certificate Generation and Verification for IoT-Based Healthcare Systems 

      Namasudra, Suyel; Sharma, Pratima; González-Crespo, Rubén; Shanmuganathan, Vimal (IEEE Consumer Electronics Magazine, 2023)
      Nowadays, medical certificates are very important for many users as they want to avail health benefits like tax purposes, insurance claims, legal procedures, and many more. Generating, issuing, and maintaining medical ...
    • EHDHE: Enhancing security of healthcare documents in IoT-enabled digital healthcare ecosystems using blockchain 

      Sharma, Pratima; Namasudra, Suyel; González-Crespo, Rubén; Parra Fuente, Javier; Chandra Trivedi, Munesh (Information Sciences, 2023)
      Nowadays, blockchain technology is one of the advanced technologies to ensure the security of users' sensitive or confidential data. Blockchain technology plays a vital role in various appli-cations like artificial ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja