• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    An automated hyperparameter tuned deep learning model enabled facial emotion recognition for autonomous vehicle drivers

    Autor: 
    Jain, Deepak Kumar
    ;
    Dutta, Ashit Kumar
    ;
    Verdú, Elena
    ;
    Alsubai, Shtwai
    ;
    Sait, Abdul Rahaman Wahab
    Fecha: 
    2023
    Palabra clave: 
    autonomous driving systems; deep learning; emotion recognition; facial expressions; metaheuristics; object detection; Scopus
    Revista / editorial: 
    Image and Vision Computing
    Citación: 
    Jain, D. K., Dutta, A. K., Verdú, E., Alsubai, S., & Sait, A. R. W. (2023). An automated hyperparameter tuned deep learning model enabled facial emotion recognition for autonomous vehicle drivers. Image and Vision Computing, 133, 104659.
    Tipo de Ítem: 
    Articulo Revista Indexada
    URI: 
    https://reunir.unir.net/handle/123456789/14874
    DOI: 
    https://doi.org/10.1016/j.imavis.2023.104659
    Dirección web: 
    https://www.sciencedirect.com/science/article/pii/S0262885623000331?via%3Dihub
    Resumen:
    The progress of autonomous driving cars is a difficult movement that causes problems regarding safety, ethics, social acceptance, and cybersecurity. Currently, the automotive industry is utilizing these technologies to assist drivers with advanced driver assistance systems. This system helps different functions to careful driving and predict drivers' ability of stable driving behavior and road safety. A great number of researches have shown that the driver's emotion is the major factor that handles the emotions, resulting in serious vehicle collisions. As a result, continuous monitoring of drivers' behavior could assist to evaluate their behavior to prevent accidents. The study proposes a new Squirrel Search Optimization with Deep Learning Enabled Facial Emotion Recognition (SSO-DLFER) technique for Autonomous Vehicle Drivers. The proposed SSO-DLFER technique focuses mainly on the identification of driver facial emotions in the AVs. The proposed SSO-DLFER technique follows two major processes namely face detection and emotion recognition. The RetinaNet model is employed at the initial phase of the face detection process. For emotion recognition, the SSO-DLFER technique applied the Neural Architectural Search (NASNet) Large feature extractor with a gated recurrent unit (GRU) model as a classifier. For improving the emotion recognition performance, the SSO-based hyperparameter tuning procedure is performed. The simulation analysis of the SSO-DLFER technique is tested under benchmark datasets and the experimental outcome was investigated under various aspects. The comparative analysis reported the enhanced performance of the SSO-DLFER algorithm on recent approaches.
    Mostrar el registro completo del ítem
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    38
    107
    133
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Knowledge-based Data Processing for Multilingual Natural Language Analysis 

      Kumar Jain, Deepak; García Martínez Eyre, Yamila; Kumar, Akshi; Bhooshan Gupta, Brij; Kotecha, Ketan (ACM Transactions on Asian and Low-Resource Language Information Processing, 2023)
      Natural Language Processing (NLP) aids the empowerment of intelligent machines by enhancing human language understanding for linguistic-based human-computer communication. Recent developments in processing power, as well ...
    • A route selection approach for variable data transmission in wireless sensor networks 

      Jain, Aarti; Khari, Manju; Verdú, Elena ; Omatsu, Shigeru; González-Crespo, Rubén (Cluster Computing, 09/2020)
      The nodes in wireless sensor networks (WSNs) are responsible for communicating data which is primarily of three types viz. video, audio and text. In literature, a large number of energy aware and shortest path based route ...
    • Real-time measurement of the uncertain epidemiological appearances of COVID-19 infections 

      Gupta, Meenu; Jain, Rachna; Taneja, Soham; Chaudhary, Gopal; Khari, Manju; Verdú, Elena (Applied soft computing, 2021)
      Virus diseases are a continued threat to human health in both community and healthcare settings. The current virus disease COVID-19 outbreak raises an unparalleled public health issue for the world at large. Wuhan is the ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja