• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2023
    • vol. 8, nº 4, december 2023
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2023
    • vol. 8, nº 4, december 2023
    • Ver ítem

    ConvGRU-CNN: Spatiotemporal Deep Learning for Real-World Anomaly Detection in Video Surveillance System

    Autor: 
    Qasim Gandapur, Maryam
    ;
    Verdú, Elena
    Fecha: 
    12/2023
    Palabra clave: 
    anomaly detection; crime detection; Convolutional Neural Network (CNN); deep learning; video surveillance; Convolutional Gated Recurrent Unit (Convolutional GRU); IJIMAI; Scopus
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/14812
    DOI: 
    https://doi.org/10.9781/ijimai.2023.05.006
    Dirección web: 
    https://www.ijimai.org/journal/bibcite/reference/3322
    Open Access
    Resumen:
    Video surveillance for real-world anomaly detection and prevention using deep learning is an important and difficult research area. It is imperative to detect and prevent anomalies to develop a nonviolent society. Realworld video surveillance cameras automate the detection of anomaly activities and enable the law enforcement systems for taking steps toward public safety. However, a human-monitored surveillance system is vulnerable to oversight anomaly activity. In this paper, an automated deep learning model is proposed in order to detect and prevent anomaly activities. The real-world video surveillance system is designed by implementing the ResNet-50, a Convolutional Neural Network (CNN) model, to extract the high-level features from input streams whereas temporal features are extracted by the Convolutional GRU (ConvGRU) from the ResNet-50 extracted features in the time-series dataset. The proposed deep learning video surveillance model (named ConvGRUCNN) can efficiently detect anomaly activities. The UCF-Crime dataset is used to evaluate the proposed deep learning model. We classified normal and abnormal activities, thereby showing the ability of ConvGRU-CNN to find a correct category for each abnormal activity. With the UCF-Crime dataset for the video surveillance-based anomaly detection, ConvGRU-CNN achieved 82.22% accuracy. In addition, the proposed model outperformed the related deep learning models.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai8_4_8.pdf
    Tamaño: 1.949Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 8, nº 4, december 2023

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    158
    344
    135
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    230
    297
    83

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Clustering analysis for automatic certification of LMS strategies in a university virtual campus 

      Regueras, Luisa M; Verdú, María J; Castro, Juan P de; Verdú, Elena (IEEE Access, 2019)
      In recent years, the use of Learning Management Systems (LMS) has grown considerably. This has had a strong effect on the learning process, particularly in higher education. Most universities incorporate LMS as a complement ...
    • Integration of an intelligent tutoring system in a course of computer network design 

      Verdú, Elena ; Regueras, Luisa M; Gal, Eran; Castro, Juan P de; Verdú, María J; Kohen-Vacs, Dan (Educational Technology Research and Development, 06/2017)
      INTUITEL is a research project aiming to offer a personalized learning environment. The INTUITEL approach includes an Intelligent Tutoring System that gives students recommendations and feedback about what the best learning ...
    • A semantic MediaWiki-based approach for the collaborative development of pedagogically meaningful learning content annotations 

      Zander, Stefan; Swertz, Christian; Verdú, Elena ; Verdú, María J; Henning, Peter A (Lecture Notes in Computer Science, 2016)
      In this work, we present an approach that allows educational resources to be collaboratively authored and annotated with well-defined pedagogical semantics using Semantic MediaWiki as collaborative knowledge engineering ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja