Mostrar el registro sencillo del ítem

dc.contributor.authorQasim Gandapur, Maryam
dc.contributor.authorVerdú, Elena
dc.date2023-12
dc.date.accessioned2023-06-01T10:12:22Z
dc.date.available2023-06-01T10:12:22Z
dc.identifier.issn1989-1660
dc.identifier.urihttps://reunir.unir.net/handle/123456789/14812
dc.description.abstractVideo surveillance for real-world anomaly detection and prevention using deep learning is an important and difficult research area. It is imperative to detect and prevent anomalies to develop a nonviolent society. Realworld video surveillance cameras automate the detection of anomaly activities and enable the law enforcement systems for taking steps toward public safety. However, a human-monitored surveillance system is vulnerable to oversight anomaly activity. In this paper, an automated deep learning model is proposed in order to detect and prevent anomaly activities. The real-world video surveillance system is designed by implementing the ResNet-50, a Convolutional Neural Network (CNN) model, to extract the high-level features from input streams whereas temporal features are extracted by the Convolutional GRU (ConvGRU) from the ResNet-50 extracted features in the time-series dataset. The proposed deep learning video surveillance model (named ConvGRUCNN) can efficiently detect anomaly activities. The UCF-Crime dataset is used to evaluate the proposed deep learning model. We classified normal and abnormal activities, thereby showing the ability of ConvGRU-CNN to find a correct category for each abnormal activity. With the UCF-Crime dataset for the video surveillance-based anomaly detection, ConvGRU-CNN achieved 82.22% accuracy. In addition, the proposed model outperformed the related deep learning models.es_ES
dc.language.isoenges_ES
dc.publisherInternational Journal of Interactive Multimedia and Artificial Intelligencees_ES
dc.relation.ispartofseries;vol. 8, nº 4
dc.relation.urihttps://www.ijimai.org/journal/bibcite/reference/3322es_ES
dc.rightsopenAccesses_ES
dc.subjectanomaly detectiones_ES
dc.subjectcrime detectiones_ES
dc.subjectConvolutional Neural Network (CNN)es_ES
dc.subjectdeep learninges_ES
dc.subjectvideo surveillancees_ES
dc.subjectConvolutional Gated Recurrent Unit (Convolutional GRU)es_ES
dc.subjectIJIMAIes_ES
dc.subjectScopuses_ES
dc.titleConvGRU-CNN: Spatiotemporal Deep Learning for Real-World Anomaly Detection in Video Surveillance Systemes_ES
dc.typearticlees_ES
reunir.tag~IJIMAIes_ES
dc.identifier.doihttps://doi.org/10.9781/ijimai.2023.05.006


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem