Mostrar el registro sencillo del ítem

dc.contributor.authorFerragut, Antoni
dc.contributor.authorGasull, Armengol
dc.contributor.authorZhang, Xiang
dc.date2023
dc.date.accessioned2023-05-04T09:54:01Z
dc.date.available2023-05-04T09:54:01Z
dc.identifier.citationFerragut, A., Gasull, A., & Zhang, X. (2023). Meromorphic first integrals of analytic diffeomorphisms. Journal of Mathematical Analysis and Applications, 519(1), 126796.es_ES
dc.identifier.issn0022-247X
dc.identifier.urihttps://reunir.unir.net/handle/123456789/14600
dc.description.abstractWe give an upper bound for the number of functionally independent meromorphic first integrals that a discrete dynamical system generated by an analytic map f can have in a neighborhood of one of its fixed points. This bound is obtained in terms of the resonances among the eigenvalues of the differential of f at this point. Our approach is inspired on similar Poincaré type results for ordinary differential equations. We also apply our results to several examples, some of them motivated by the study of several difference equations.es_ES
dc.language.isoenges_ES
dc.publisherJournal of Mathematical Analysis and Applicationses_ES
dc.relation.ispartofseries;vol. 519, nº 1
dc.relation.urihttps://www.sciencedirect.com/science/article/pii/S0022247X22008101?via%3Dihubes_ES
dc.rightsrestrictedAccesses_ES
dc.subjectdiscrete dynamical systemes_ES
dc.subjectintegrabilityes_ES
dc.subjectmeromorphic first integralses_ES
dc.subjectScopuses_ES
dc.subjectJCRes_ES
dc.titleMeromorphic first integrals of analytic diffeomorphismses_ES
dc.typeArticulo Revista Indexadaes_ES
reunir.tag~ARIes_ES
dc.identifier.doihttps://doi.org/10.1016/j.jmaa.2022.126796


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem