• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2024
    • vol. 8, nº 6, june 2024
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2024
    • vol. 8, nº 6, june 2024
    • Ver ítem

    Brain Tumor Classification Using a Pre-Trained Auxiliary Classifying Style-Based Generative Adversarial Network

    Autor: 
    Kumaar, M. Akshay
    ;
    Samiayya, Duraimurugan
    ;
    Rajinikanth, Venkatesan
    ;
    Raj Vincent P M, Durai
    ;
    Kadry, Seifedine
    Fecha: 
    06/2024
    Palabra clave: 
    generative adversarial network; image; magnetic resonance imaging; medical images; network; IJIMAI
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)
    Citación: 
    M. Akshay Kumaar, Duraimurugan Samiayya, Venkatesan Rajinikanth, Durai Raj Vincent P M, Seifedine Kadry (2024). "Brain Tumor Classification Using a Pre-Trained Auxiliary Classifying Style-Based Generative Adversarial Network", International Journal of Interactive Multimedia and Artificial Intelligence, vol. 8, issue Regular Issue, no. 6, pp. 101-111. https://doi.org/10.9781/ijimai.2023.02.008
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/14357
    DOI: 
    https://doi.org/10.9781/ijimai.2023.02.008
    Open Access
    Resumen:
    Computer Vision's applications and their use cases in the medical field have grown vastly in the past decade. The algorithms involved in these critical applications have helped doctors and surgeons perform procedures on patients more precisely with minimal side effects. However, obtaining medical data for developing large scale generalizable and intelligent algorithms is challenging in the real world as multiple socio-economic, administrative, and demographic factors impact it. Furthermore, training machine learning algorithms with a small amount of data can lead to less accuracy and performance bias, resulting in incorrect diagnosis and treatment, which can cause severe side effects or even casualties. Generative Adversarial Networks (GAN) have recently proven to be an effective data synthesis and augmentation technique for training deep learning-based image classifiers. This research proposes a novel approach that uses a Style-based Generative Adversarial Network for conditional synthesis and auxiliary classification of Brain Tumors by pre-training. The Discriminator of the pre-trained GAN is fine-tuned with extensive data augmentation techniques to improve the classification accuracy when the training data is small. The proposed method was validated with an open-source MRI dataset which consists of three types of tumors - Glioma, Meningioma, and Pituitary. The proposed system achieved 99.51% test accuracy, 99.52% precision score, and 99.50% recall score, significantly higher than other approaches. Since the framework can be made adaptive using transfer learning, this method also benefits new and small datasets of similar distributions.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: Brain Tumor Classification Using a Pre-Trained Auxiliary Classifying Style-Based Generative Adversarial Network.pdf
    Tamaño: 3.245Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 8, nº 6, june 2024

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    393
    732
    416
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    278
    319
    116

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • A study on RGB image multi-thresholding using Kapur/Tsallis entropy and moth-flame algorithm 

      Rajinikanth, Venkatesan; Kadry, Seifedine; González-Crespo, Rubén ; Verdú, Elena (Universidad Internacional de la Rioja, 2021)
      In the literature, a considerable number of image processing and evaluation procedures are proposed and implemented in various domains due to their practical importance. Thresholding is one of the pre-processing techniques, ...
    • Classification of Breast Thermal Images into Healthy/Cancer Group Using Pre-Trained Deep Learning Schemes 

      Kadry, Seifedine; González-Crespo, Rubén; Herrera-Viedma, Enrique; Krishnamoorthy, Sujatha; Rajinikanth, Venkatesan (Procedia Computer Science, 2022)
      In the women's community, Breast Cancer (BC) is a severe disease. The World Health Organization reported in 2020 that 2.26 million deaths occur due to BC. BC is curable if detected early. Since thermal imaging is non-invasive ...
    • Automatic detection of lung nodule in CT scan slices using CNN segmentation schemes: A study 

      Kadry, Seifedine; Herrera-Viedma, Enrique; González-Crespo, Rubén; Krishnamoorthy, Sujatha; Rajinikanth, Venkatesan (Procedia Computer Science, 2022)
      The lung is one of the prime respiratory organs in human physiology, and its abnormality will severely disrupt the respiratory system. Lung Nodule (LN) is one of the abnormalities, and early screening and treatment are ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja