Mostrar el registro sencillo del ítem

dc.contributor.authorLiu, Jie
dc.contributor.authorDey, Nilanjan
dc.contributor.authorDas, Nabanita
dc.contributor.authorGonzález-Crespo, Rubén
dc.contributor.authorShi, Fuqian
dc.contributor.authorLiu, Chanjuan
dc.date2022
dc.date.accessioned2022-12-09T12:40:53Z
dc.date.available2022-12-09T12:40:53Z
dc.identifier.issn15684946
dc.identifier.urihttps://reunir.unir.net/handle/123456789/13881
dc.description.abstractFunctional magnetic resonance imaging (fMRI) is widely used for clinical examinations, diagnosis, and treatment. By segmenting fMRI images, large-scale medical image data can be processed more efficiently. Most deep learning (DL)-based segmentation typically uses some type of encoding–decoding model. In this study, affective computing (AC) was developed using the brain fMRI dataset generated from an emotion simulation experiment. The brain fMRI dataset was segmented using an attention model, a deep convolutional neural network-32 (DCNN-32) based on Laplacian of Gaussian (LoG) filter, called ADCNN-32-G. For the evaluation of image segmentation, several indices are presented. By comparing the proposed ADCNN-32s-G model to distance regularized level set evolution (DRLSE), single-seeded region growing, and the single segNet full convolutional network model (FCN), the proposed model performs well in segmenting mass fMRI datasets. The proposed method can be applied to the real-time monitoring of patients with depression, and it can effectively advise human mental health.es_ES
dc.language.isoenges_ES
dc.publisherApplied Soft Computinges_ES
dc.relation.ispartofseries;vol. 122, nº 108837
dc.relation.urihttps://www.sciencedirect.com/science/article/pii/S1568494622002344?via%3Dihubes_ES
dc.rightsopenAccesses_ES
dc.subjectaffective computinges_ES
dc.subjectattention modeles_ES
dc.subjectdeep convolution neural networkes_ES
dc.subjectemotion stimulies_ES
dc.subjectfMRIes_ES
dc.subjectimage segmentationes_ES
dc.subjectScopuses_ES
dc.subjectJCRes_ES
dc.titleBrain fMRI segmentation under emotion stimuli incorporating attention-based deep convolutional neural networkses_ES
dc.typeArticulo Revista Indexadaes_ES
reunir.tag~ARIes_ES
dc.identifier.doihttps://doi.org/10.1016/j.asoc.2022.108837


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem