Mostrar el registro sencillo del ítem

dc.contributor.authorCheng, Xiaochun
dc.contributor.authorKadry, Seifedine
dc.contributor.authorMeqdad, Maytham N.
dc.contributor.authorGonzález-Crespo, Rubén
dc.date2022
dc.date.accessioned2022-10-21T07:40:22Z
dc.date.available2022-10-21T07:40:22Z
dc.identifier.citationCheng, X., Kadry, S., Meqdad, M.N. et al. CNN supported framework for automatic extraction and evaluation of dermoscopy images. J Supercomput 78, 17114–17131 (2022). https://doi.org/10.1007/s11227-022-04561-w
dc.identifier.issn0920-8542
dc.identifier.urihttps://reunir.unir.net/handle/123456789/13693
dc.description.abstractSkin Cancer is one of the acute diseases listed under top 5 groups in 2020 report of World Health Organisation. This research aims to propose a Convolutional Neural Network framework to extract and evaluate the suspicious skin region. This framework consists following phases; (i) Image collection and resizing, (ii) Suspicious skin section extraction using VGG-UNet, (iii) Deep-feature extraction, (iv) Handcrafted features mining from the suspicious skin section, (v) serial feature integration, and (vi) Classifier training and validation. This research considered dermoscopy images of International Skin Imaging Collaboration benchmark dataset for the experimental assessment and the result of the proposed framework is separately analysed for segmentation and classification tasks. In this work, benign and malignant class images are considered for the examination and during the classification task, integration of the deep and handcrafted features are considered. The experimental results of this study present a segmentation accuracy of > 98% with UNet and a classification accuracy of > 98% with VGG16 combined with Random Forest classifier.es_ES
dc.language.isoenges_ES
dc.publisherJournal of Supercomputinges_ES
dc.relation.ispartofseries;vol. 78, nº 15
dc.relation.urihttps://link.springer.com/article/10.1007/s11227-022-04561-wes_ES
dc.rightsopenAccesses_ES
dc.subjectskin canceres_ES
dc.subjectbenignes_ES
dc.subjectmalignantes_ES
dc.subjectdermoscopyes_ES
dc.subjectUNetes_ES
dc.subjectVGG16es_ES
dc.subjectJCRes_ES
dc.subjectScopuses_ES
dc.titleCNN supported framework for automatic extraction and evaluation of dermoscopy imageses_ES
dc.typeArticulo Revista Indexadaes_ES
reunir.tag~ARIes_ES
dc.identifier.doihttps://doi.org/10.1007/s11227-022-04561-w


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem