• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    Instance-based defense against adversarial attacks in Deep Reinforcement Learning

    Autor: 
    García, Javier
    ;
    Sagredo-Olivenza, Ismael
    Fecha: 
    2022
    Palabra clave: 
    adversarial reinforcement learning; defense methods; reinforcement learning; Scopus; JCR
    Revista / editorial: 
    Elsevier Ltd
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/13264
    DOI: 
    https://doi.org/10.1016/j.engappai.2021.104514
    Dirección web: 
    https://www.sciencedirect.com/science/article/abs/pii/S0952197621003626?via%3Dihub
    Resumen:
    Deep Reinforcement Learning systems are now a hot topic in Machine Learning for their effectiveness in many complex tasks, but their application in safety-critical domains (e.g., robot control or self-autonomous driving) remains dangerous without mechanism to detect and prevent risk situations. In Deep RL, such risk is mostly in the form of adversarial attacks, which introduce small perturbations to sensor inputs with the aim of changing the network-based decisions and thus cause catastrophic situations. In the light of these dangers, a promising line of research is that of providing these Deep RL algorithms with suitable defenses, especially when deploying in real environments. This paper suggests that this line of research could be greatly improved by the concepts from the existing research field of Safe Reinforcement Learning, which has been postulated as a family of RL algorithms capable of providing defenses against many forms of risks. However, the connections between Safe RL and the design of defenses against adversarial attacks in Deep RL remain largely unexplored. This paper seeks to explore precisely some of these connections. In particular, this paper proposes to reuse some of the concepts from existing Safe RL algorithms to create a novel and effective instance-based defense for the deployment stage of Deep RL policies. The proposed algorithm uses a risk function based on how far a state is from the state space known by the agent, that allows identifying and preventing adversarial situations. The success of the proposed defense has been evaluated in 4 Atari games.
    Mostrar el registro completo del ítem
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    24
    34
    106
    100
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • I Congreso Español de Videojuegos 2022 

      González Calero, Pedro Antonio; Gómez Martín, Marco Antonio; Gómez Martín, Pedro Pablo; Gutiérrez Manjón, Sergio; Gutiérrez Sánchez, Pablo; Peinado, Federico; Sánchez-Ruiz Granados, Antonio; Barbancho, Isabel; Blanco Bueno, Carlos; Botella Nicolás, Ana María; Chover, Miguel; Díaz Álvarez, Josefa; Echeverría, Jorge; Fernández Leiva, Antonio J.; Fernández Ruiz, Marta; Gallego-Durán, Francisco; García Sánchez, Pablo; Gutiérrez Vela, Francisco L; Lara-Cabrera, Raúl; León, Carlos; Moreno, Jorge L.; Lozano Muñoz, Alejandro; Mayor, Jesús; Medina Medina, Nuria; Mejías-Climent, Laura; Mora, Antonio M; Munarriz, Jaime; Patow, Gustavo A.; Sagredo-Olivenza, Ismael; Salinas, María-José; Sanchez I. Peris, Francesc Josep; Sánchez-Ruiz, Antonio A; Shliakhovchuk, Elena; Tejada, Jesus (CEUR Workshop Proceedings, 2022)
      {Resumen no disponible]
    • Comparison of a Tablet Versus Computer-Based Classical Theatre Game Among 8–13 Year Children 

      Romero-Hernández, Alejandro; Gonzalez-Riojo, Manuel; Sagredo-Olivenza, Ismael; Manero, Borja (IEEE Access, 2021)
      In the last ten years, many studies have shown the advantages of videogames as tools for learning, engagement, raising awareness, or increasing interest in different fields. Schools are often the main focus of those studies. ...
    • Painting Authorship and Forgery Detection Challenges with AI Image Generation Algorithms: Rembrandt and 17th Century Dutch Painters as a Case Study 

      Fraile-Narvaez, Marcelo; Sagredo-Olivenza, Ismael; McGowan, Nadia (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 12/2022)
      Image authorship attribution presents many challenges and difficulties which have increased with the capabilities presented by synthetic image generation through different artificial intelligence algorithms available today. ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja