Instance-based defense against adversarial attacks in Deep Reinforcement Learning
Autor:
García, Javier
; Sagredo-Olivenza, Ismael
Fecha:
2022Palabra clave:
Revista / editorial:
Elsevier LtdTipo de Ítem:
articleResumen:
Deep Reinforcement Learning systems are now a hot topic in Machine Learning for their effectiveness in many complex tasks, but their application in safety-critical domains (e.g., robot control or self-autonomous driving) remains dangerous without mechanism to detect and prevent risk situations. In Deep RL, such risk is mostly in the form of adversarial attacks, which introduce small perturbations to sensor inputs with the aim of changing the network-based decisions and thus cause catastrophic situations. In the light of these dangers, a promising line of research is that of providing these Deep RL algorithms with suitable defenses, especially when deploying in real environments. This paper suggests that this line of research could be greatly improved by the concepts from the existing research field of Safe Reinforcement Learning, which has been postulated as a family of RL algorithms capable of providing defenses against many forms of risks. However, the connections between Safe RL and the design of defenses against adversarial attacks in Deep RL remain largely unexplored. This paper seeks to explore precisely some of these connections. In particular, this paper proposes to reuse some of the concepts from existing Safe RL algorithms to create a novel and effective instance-based defense for the deployment stage of Deep RL policies. The proposed algorithm uses a risk function based on how far a state is from the state space known by the agent, that allows identifying and preventing adversarial situations. The success of the proposed defense has been evaluated in 4 Atari games.
Este ítem aparece en la(s) siguiente(s) colección(es)
Estadísticas de uso
Año |
2012 |
2013 |
2014 |
2015 |
2016 |
2017 |
2018 |
2019 |
2020 |
2021 |
2022 |
2023 |
2024 |
Vistas |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
24 |
34 |
97 |
Descargas |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
Ítems relacionados
Mostrando ítems relacionados por Título, autor o materia.
-
I Congreso Español de Videojuegos 2022
González Calero, Pedro Antonio; Gómez Martín, Marco Antonio; Gómez Martín, Pedro Pablo; Gutiérrez Manjón, Sergio; Gutiérrez Sánchez, Pablo; Peinado, Federico; Sánchez-Ruiz Granados, Antonio; Barbancho, Isabel; Blanco Bueno, Carlos; Botella Nicolás, Ana María; Chover, Miguel; Díaz Álvarez, Josefa; Echeverría, Jorge; Fernández Leiva, Antonio J.; Fernández Ruiz, Marta; Gallego-Durán, Francisco; García Sánchez, Pablo; Gutiérrez Vela, Francisco L; Lara-Cabrera, Raúl; León, Carlos; Moreno, Jorge L.; Lozano Muñoz, Alejandro; Mayor, Jesús; Medina Medina, Nuria; Mejías-Climent, Laura; Mora, Antonio M; Munarriz, Jaime; Patow, Gustavo A.; Sagredo-Olivenza, Ismael; Salinas, María-José; Sanchez I. Peris, Francesc Josep; Sánchez-Ruiz, Antonio A; Shliakhovchuk, Elena; Tejada, Jesus (CEUR Workshop Proceedings, 2022){Resumen no disponible] -
Comparison of a Tablet Versus Computer-Based Classical Theatre Game Among 8–13 Year Children
Romero-Hernández, Alejandro; Gonzalez-Riojo, Manuel; Sagredo-Olivenza, Ismael; Manero, Borja (IEEE Access, 2021)In the last ten years, many studies have shown the advantages of videogames as tools for learning, engagement, raising awareness, or increasing interest in different fields. Schools are often the main focus of those studies. ... -
Painting Authorship and Forgery Detection Challenges with AI Image Generation Algorithms: Rembrandt and 17th Century Dutch Painters as a Case Study
Fraile-Narvaez, Marcelo; Sagredo-Olivenza, Ismael; McGowan, Nadia (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 12/2022)Image authorship attribution presents many challenges and difficulties which have increased with the capabilities presented by synthetic image generation through different artificial intelligence algorithms available today. ...