• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    Sound measurement and automatic vehicle classification and counting applied to road traffic noise characterization

    Autor: 
    Acosta Agudelo, Oscar Esneider
    ;
    Montenegro, Carlos Enrique
    ;
    González-Crespo, Rubén
    Fecha: 
    2021
    Palabra clave: 
    classification; deep learning; environmental noise; road traffic; vehicle; Scopus; JCR
    Revista / editorial: 
    Springer Science and Business Media Deutschland GmbH
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/13123
    DOI: 
    https://doi.org/10.1007/s00500-021-05766-6
    Dirección web: 
    https://link.springer.com/article/10.1007/s00500-021-05766-6
    Resumen:
    Increase in population density in large cities has increased the environmental noise present in these environments, causing negative effects on human health. There are different sources of environmental noise; however, noise from road traffic is the most prevalent in cities. Therefore, it is necessary to have tools that allow noise characterization to establish strategies that permit obtaining levels that do not affect the quality of life of people. This research discusses the implementation of a system that allows the acquisition of data to characterize the noise generated by road traffic. First, the methodology for obtaining acoustic indicators with an electret measurement microphone is described, so that it adjusts to the data collection needs for road traffic noise analyses. Then, an approach for the classification and counting of automatic vehicular traffic through deep learning is presented. Results showed that there were differences of 0.2 dBA in terms of RMSE between a type 1 sound level meter and the measurement microphone used. With reference to vehicle classification and counting for four categories, the approximate error is between 3.3% and -15.5%.
    Mostrar el registro completo del ítem
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    35
    43
    62
    105
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Correction to: Sound measurement and automatic vehicle classification and counting applied to road traffic noise characterization 

      Acosta Agudelo, Oscar Esneider; Montenegro, Carlos Enrique; González-Crespo, Rubén (Springer Science and Business Media Deutschland GmbH, 2021)
      A correction to this paper has been published: https://bv.unir.net:2133/10.1007/s00500-021-05852-9. © 2021, Springer-Verlag GmbH Germany, part of Springer Nature.
    • Integration of DevOps Practices on a Noise Monitor System with CircleCI and Terraform 

      Romero, Esteban Elias; Camacho, David; Montenegro, Carlos Enrique; Acosta Agudelo, Oscar Esneider; González-Crespo, Rubén; Gaona-García, Elvis; Herrera Martínez, Marcelo (ACM Transactions on Management Information Systems, 2022)
      Lowering pollution levels is one of the main principles of Sustainable Development goals dictated by the United Nations. Consequently, developments on noise monitoring contribute in great manner to this purpose, since they ...
    • Blockchain based integrated security measure for reliable service delegation in 6G communication environment 

      Manogaran, Gunasekaran; Rawal, Bharat S.; Saravanan, Vijayalakshmi M.E.; Kumar, Priyan Malarvizhi; Sanjuán Martínez, Óscar ; González-Crespo, Rubén ; Montenegro Marin, Carlos Enrique; Krishnamoorthy, Sujatha (Computer Communications, 01/09/2020)
      Sixth generation (6G) communication environment is unfolded in the recent years in order to provide high throughput less latency services for the mobile users. This environment encloses a variety of heterogeneous resources ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja