• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    Toxicity prediction based on artificial intelligence: A multidisciplinary overview

    Autor: 
    Peréz-Santín, Efren
    ;
    Rodríguez Solana, Raquel
    ;
    González García, Mariano
    ;
    García-Suárez, María del Mar
    ;
    Blanco Díaz, Gerardo David
    ;
    Cima-Cabal, María Dolores
    ;
    Moreno Rojas, José Manuel
    ;
    López-Sánchez, José Ignacio
    Fecha: 
    2021
    Palabra clave: 
    artificial intelligence; in silico; multidisciplinar; prediction; toxicity; Scopus; JCR
    Revista / editorial: 
    John Wiley and Sons Inc
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/13121
    DOI: 
    https://doi.org/10.1002/wcms.1516
    Dirección web: 
    https://wires.onlinelibrary.wiley.com/doi/10.1002/wcms.1516
    Resumen:
    The use and production of chemical compounds are subjected to strong legislative pressure. Chemical toxicity and adverse effects derived from exposure to chemicals are key regulatory aspects for a multitude of industries, such as chemical, pharmaceutical, or food, due to direct harm to humans, animals, plants, or the environment. Simultaneously, there are growing demands on the authorities to replace traditional in vivo toxicity tests carried out on laboratory animals (e.g., European Union REACH/3R principles, Tox21 and ToxCast by the U.S. government, etc.) with in silica computational models. This is not only for ethical aspects, but also because of its greater economic and time efficiency, as well as more recently because of their superior reliability and robustness than in vivo tests, mainly since the entry into the scene of artificial intelligence (AI)-based models, promoting and setting the necessary requirements that these new in silico methodologies must meet. This review offers a multidisciplinary overview of the state of the art in the application of AI-based methodologies for the fulfillment of regulatory-related toxicological issues. This article is categorized under: Data Science > Chemoinformatics Data Science > Artificial Intelligence/Machine Learning.
    Mostrar el registro completo del ítem
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    70
    135
    207
    105
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Pneumolysin as a target for new therapies against pneumococcal infections: A systematic review 

      Cima-Cabal, María Dolores; Molina, Felipe; López-Sánchez, José Ignacio; Pérez-Santín, Efrén; García-Suárez, María del Mar (PLoS ONE, 2023)
      Background This systematic review evaluates pneumolysin (PLY) as a target for new treatments against pneumococcal infections. Pneumolysin is one of the main virulence factors produced by all types of pneumococci. This toxin ...
    • Review: Presence, distribution and current pesticides used in Spanish agricultural practices 

      González García, Mariano; López-Sánchez, José Ignacio; Segovia Bravo, Kharla Andreina; Cima-Cabal, María Dolores; Peréz-Santín, Efren (Science of the Total Environment, 2022)
      To guarantee an adequate food supply for the world's growing population, intensive agriculture is necessary to ensure efficient food production. The use of pesticides helps maintain maximum productivity in intensive ...
    • Magnetic Nanoclusters Increase the Sensitivity of Lateral Flow Immunoassays for Protein Detection: Application to Pneumolysin as a Biomarker for Streptococcus pneumoniae 

      Salvador, Maria; Marques-Fernandez, Jose Luis; Bunge, Alexander; Martinez-Garcia, Jose Carlos; Turcu, Rodica; Peddis, Davide; García-Suárez, María del Mar ; Cima-Cabal, María Dolores ; Rivas, Montserrat (Nanomaterials, 06/2022)
      Lateral flow immunoassays for detecting biomarkers in body fluids are simple, quick, inexpensive point-of-care tests widely used in disease surveillance, such as during the coronavirus disease 2019 (COVID-19) pandemic. ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja