Mostrar el registro sencillo del ítem

dc.contributor.authorPeréz-Santín, Efren
dc.contributor.authorRodríguez Solana, Raquel
dc.contributor.authorGonzález García, Mariano
dc.contributor.authorGarcía-Suárez, María del Mar
dc.contributor.authorBlanco Díaz, Gerardo David
dc.contributor.authorCima-Cabal, María Dolores
dc.contributor.authorMoreno Rojas, José Manuel
dc.contributor.authorLópez-Sánchez, José Ignacio
dc.date2021
dc.date.accessioned2022-05-19T09:56:04Z
dc.date.available2022-05-19T09:56:04Z
dc.identifier.issn1759-0876
dc.identifier.urihttps://reunir.unir.net/handle/123456789/13121
dc.description.abstractThe use and production of chemical compounds are subjected to strong legislative pressure. Chemical toxicity and adverse effects derived from exposure to chemicals are key regulatory aspects for a multitude of industries, such as chemical, pharmaceutical, or food, due to direct harm to humans, animals, plants, or the environment. Simultaneously, there are growing demands on the authorities to replace traditional in vivo toxicity tests carried out on laboratory animals (e.g., European Union REACH/3R principles, Tox21 and ToxCast by the U.S. government, etc.) with in silica computational models. This is not only for ethical aspects, but also because of its greater economic and time efficiency, as well as more recently because of their superior reliability and robustness than in vivo tests, mainly since the entry into the scene of artificial intelligence (AI)-based models, promoting and setting the necessary requirements that these new in silico methodologies must meet. This review offers a multidisciplinary overview of the state of the art in the application of AI-based methodologies for the fulfillment of regulatory-related toxicological issues. This article is categorized under: Data Science > Chemoinformatics Data Science > Artificial Intelligence/Machine Learning.es_ES
dc.language.isoenges_ES
dc.publisherJohn Wiley and Sons Inces_ES
dc.relation.ispartofseries;vol. 11, nº 5
dc.relation.urihttps://wires.onlinelibrary.wiley.com/doi/10.1002/wcms.1516es_ES
dc.rightsrestrictedAccesses_ES
dc.subjectartificial intelligencees_ES
dc.subjectin silicoes_ES
dc.subjectmultidisciplinares_ES
dc.subjectpredictiones_ES
dc.subjecttoxicityes_ES
dc.subjectScopuses_ES
dc.subjectJCRes_ES
dc.titleToxicity prediction based on artificial intelligence: A multidisciplinary overviewes_ES
dc.typearticlees_ES
reunir.tag~ARIes_ES
dc.identifier.doihttps://doi.org/10.1002/wcms.1516


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem