• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2021
    • vol. 6, nº 6, june 2021
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2021
    • vol. 6, nº 6, june 2021
    • Ver ítem

    Promising Deep Semantic Nuclei Segmentation Models for Multi-Institutional Histopathology Images of Different Organs

    Autor: 
    Hassan, Loay
    ;
    Saleh, Adel
    ;
    Abdel-Nasser, Mohamed
    ;
    Omer, Osama A.
    ;
    Puig, Domenec
    Fecha: 
    06/2021
    Palabra clave: 
    digital pathology; nuclei segmentation; whole slide imaging; deep learning; IJIMAI
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/12960
    DOI: 
    https://doi.org/10.9781/ijimai.2020.10.004
    Dirección web: 
    https://www.ijimai.org/journal/bibcite/reference/2827
    Open Access
    Resumen:
    Nuclei segmentation in whole-slide imaging (WSI) plays a crucial role in the field of computational pathology. It is a fundamental task for different applications, such as cancer cell type classification, cancer grading, and cancer subtype classification. However, existing nuclei segmentation methods face many challenges, such as color variation in histopathological images, the overlapping and clumped nuclei, and the ambiguous boundary between different cell nuclei, that limit their performance. In this paper, we present promising deep semantic nuclei segmentation models for multi-institutional WSI images (i.e., collected from different scanners) of different organs. Specifically, we study the performance of pertinent deep learning-based models with nuclei segmentation in WSI images of different stains and various organs. We also propose a feasible deep learning nuclei segmentation model formed by combining robust deep learning architectures. A comprehensive comparative study with existing software and related methods in terms of different evaluation metrics and the number of parameters of each model, emphasizes the efficacy of the proposed nuclei segmentation models.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai_6_6_4.pdf
    Tamaño: 1.203Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 6, nº 6, june 2021

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    60
    97
    141
    131
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    21
    70
    71
    50

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Machine Learning Based Method for Estimating Energy Losses in Large-Scale Unbalanced Distribution Systems with Photovoltaics 

      Mahmoud, Karar; Abdel-Nasser, Mohamed; Kashef, Heba; Puig, Domenec; Lehtonen, Matti (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 12/2020)
      In the recent years, the penetration of photovoltaics (PV) has obviously been increased in unbalanced power distribution systems. Driven by this trend, comprehensive simulation tools are required to accurately analyze ...
    • A Novel Smart Grid State Estimation Method Based on Neural Networks 

      Abdel-Nasser, Mohamed; Mahmoud, Karar; Kashef, Heba (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 06/2018)
      The rapid development in smart grids needs efficient state estimation methods. This paper presents a novel method for smart grid state estimation (e.g., voltages, active and reactive power loss) using artificial neural ...
    • Mapping and Deep Analysis of Image Dehazing: Coherent Taxonomy, Datasets, Open Challenges, Motivations, and Recommendations 

      Hameed Abdulkareem, Karrar; Arbaiy, Nureize; Hussein Arif, Zainab; Nasser Al-Mhiqani, Mohammed; Abed Mohammed, Mazin; Kadry, Seifedine; Alkareem Alyasseri, Zaid Abdi (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 12/2021)
      Our study aims to review and analyze the most relevant studies in the image dehazing field. Many aspects have been deemed necessary to provide a broad understanding of various studies that have been examined through surveying ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja