• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2018
    • vol. 5, nº 1, june 2018
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2018
    • vol. 5, nº 1, june 2018
    • Ver ítem

    A Novel Smart Grid State Estimation Method Based on Neural Networks

    Autor: 
    Abdel-Nasser, Mohamed
    ;
    Mahmoud, Karar
    ;
    Kashef, Heba
    Fecha: 
    06/2018
    Palabra clave: 
    renewable energies; neural network; smart grid; power loss; voltage profile; IJIMAI
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/12361
    DOI: 
    http://doi.org/10.9781/ijimai.2018.01.004
    Dirección web: 
    https://ijimai.org/journal/bibcite/reference/2650
    Open Access
    Resumen:
    The rapid development in smart grids needs efficient state estimation methods. This paper presents a novel method for smart grid state estimation (e.g., voltages, active and reactive power loss) using artificial neural networks (ANNs). The proposed method which is called SE-NN (state estimation using neural network) can evaluate the state at any point of smart grid systems considering fluctuated loads. To demonstrate the effectiveness of the proposed method, it has been applied on IEEE 33-bus distribution system with different data resolutions. The accuracy of the proposed method is validated by comparing the results with an exact power flow method. The proposed SE-NN method is a very fast tool to estimate voltages and re/active power loss with a high accuracy compared to the traditional methods.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai_5_1_12_pdf_18312.pdf
    Tamaño: 957.9Kb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 5, nº 1, june 2018

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    39
    64
    91
    69
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    29
    61
    45
    17

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Machine Learning Based Method for Estimating Energy Losses in Large-Scale Unbalanced Distribution Systems with Photovoltaics 

      Mahmoud, Karar; Abdel-Nasser, Mohamed; Kashef, Heba; Puig, Domenec; Lehtonen, Matti (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 12/2020)
      In the recent years, the penetration of photovoltaics (PV) has obviously been increased in unbalanced power distribution systems. Driven by this trend, comprehensive simulation tools are required to accurately analyze ...
    • Adaptive Deep Learning Detection Model for Multi-Foggy Images 

      Hussein Arif, Zainab; Mahmoud, Moamin; Hameed Abdulkareem, Karrar; Kadry, Seifedine; Abed Mohammed, Mazin; Nasser Al-Mhiqani, Mohammed; Al-Waisy, Alaa S.; Nedoma, Jan (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 12/2022)
      The fog has different features and effects within every single environment. Detection whether there is fog in the image is considered a challenge and giving the type of fog has a substantial enlightening effect on image ...
    • Promising Deep Semantic Nuclei Segmentation Models for Multi-Institutional Histopathology Images of Different Organs 

      Hassan, Loay; Saleh, Adel; Abdel-Nasser, Mohamed; Omer, Osama A.; Puig, Domenec (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 06/2021)
      Nuclei segmentation in whole-slide imaging (WSI) plays a crucial role in the field of computational pathology. It is a fundamental task for different applications, such as cancer cell type classification, cancer grading, ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja