• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2020
    • vol. 6, nº 4, december 2020
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2020
    • vol. 6, nº 4, december 2020
    • Ver ítem

    Machine Learning Based Method for Estimating Energy Losses in Large-Scale Unbalanced Distribution Systems with Photovoltaics

    Autor: 
    Mahmoud, Karar
    ;
    Abdel-Nasser, Mohamed
    ;
    Kashef, Heba
    ;
    Puig, Domenec
    ;
    Lehtonen, Matti
    Fecha: 
    12/2020
    Palabra clave: 
    machine learning; neural network; energy; large-scale unbalanced distribution system; photovoltaics; IJIMAI
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/12810
    DOI: 
    https://doi.org/10.9781/ijimai.2020.08.002
    Dirección web: 
    https://www.ijimai.org/journal/bibcite/reference/2803
    Open Access
    Resumen:
    In the recent years, the penetration of photovoltaics (PV) has obviously been increased in unbalanced power distribution systems. Driven by this trend, comprehensive simulation tools are required to accurately analyze large-scale distribution systems with a fast-computational speed. In this paper, we propose an efficient method for performing time-series simulations for unbalanced power distribution systems with PV. Unlike the existing iterative methods, the proposed method is based on machine learning. Specifically, we propose a fast, reliable and accurate method for determining energy losses in distribution systems with PV. The proposed method is applied to a large-scale unbalanced distribution system (the IEEE 906 Bus European LV Test Feeder) with PV grid-connected units. The method is validated using OpenDSS software. The results demonstrate the high accuracy and computational performance of the proposed method.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai_6_4_17.pdf
    Tamaño: 940.8Kb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 6, nº 4, december 2020

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    36
    51
    110
    122
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    25
    103
    72
    53

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • A Novel Smart Grid State Estimation Method Based on Neural Networks 

      Abdel-Nasser, Mohamed; Mahmoud, Karar; Kashef, Heba (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 06/2018)
      The rapid development in smart grids needs efficient state estimation methods. This paper presents a novel method for smart grid state estimation (e.g., voltages, active and reactive power loss) using artificial neural ...
    • Promising Deep Semantic Nuclei Segmentation Models for Multi-Institutional Histopathology Images of Different Organs 

      Hassan, Loay; Saleh, Adel; Abdel-Nasser, Mohamed; Omer, Osama A.; Puig, Domenec (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 06/2021)
      Nuclei segmentation in whole-slide imaging (WSI) plays a crucial role in the field of computational pathology. It is a fundamental task for different applications, such as cancer cell type classification, cancer grading, ...
    • Adaptive Deep Learning Detection Model for Multi-Foggy Images 

      Hussein Arif, Zainab; Mahmoud, Moamin; Hameed Abdulkareem, Karrar; Kadry, Seifedine; Abed Mohammed, Mazin; Nasser Al-Mhiqani, Mohammed; Al-Waisy, Alaa S.; Nedoma, Jan (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 12/2022)
      The fog has different features and effects within every single environment. Detection whether there is fog in the image is considered a challenge and giving the type of fog has a substantial enlightening effect on image ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja