Machine Learning Based Method for Estimating Energy Losses in Large-Scale Unbalanced Distribution Systems with Photovoltaics
Autor:
Mahmoud, Karar
; Abdel-Nasser, Mohamed
; Kashef, Heba
; Puig, Domenec
; Lehtonen, Matti
Fecha:
12/2020Palabra clave:
Revista / editorial:
International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)Tipo de Ítem:
articleDirección web:
https://www.ijimai.org/journal/bibcite/reference/2803Resumen:
In the recent years, the penetration of photovoltaics (PV) has obviously been increased in unbalanced power distribution systems. Driven by this trend, comprehensive simulation tools are required to accurately analyze large-scale distribution systems with a fast-computational speed. In this paper, we propose an efficient method for performing time-series simulations for unbalanced power distribution systems with PV. Unlike the existing iterative methods, the proposed method is based on machine learning. Specifically, we propose a fast, reliable and accurate method for determining energy losses in distribution systems with PV. The proposed method is applied to a large-scale unbalanced distribution system (the IEEE 906 Bus European LV Test Feeder) with PV grid-connected units. The method is validated using OpenDSS software. The results demonstrate the high accuracy and computational performance of the proposed method.
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(es)
Estadísticas de uso
Año |
2012 |
2013 |
2014 |
2015 |
2016 |
2017 |
2018 |
2019 |
2020 |
2021 |
2022 |
2023 |
2024 |
Vistas |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
36 |
51 |
109 |
Descargas |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
25 |
103 |
71 |
Ítems relacionados
Mostrando ítems relacionados por Título, autor o materia.
-
A Novel Smart Grid State Estimation Method Based on Neural Networks
Abdel-Nasser, Mohamed; Mahmoud, Karar; Kashef, Heba (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 06/2018)The rapid development in smart grids needs efficient state estimation methods. This paper presents a novel method for smart grid state estimation (e.g., voltages, active and reactive power loss) using artificial neural ... -
Promising Deep Semantic Nuclei Segmentation Models for Multi-Institutional Histopathology Images of Different Organs
Hassan, Loay; Saleh, Adel; Abdel-Nasser, Mohamed; Omer, Osama A.; Puig, Domenec (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 06/2021)Nuclei segmentation in whole-slide imaging (WSI) plays a crucial role in the field of computational pathology. It is a fundamental task for different applications, such as cancer cell type classification, cancer grading, ... -
Adaptive Deep Learning Detection Model for Multi-Foggy Images
Hussein Arif, Zainab; Mahmoud, Moamin; Hameed Abdulkareem, Karrar; Kadry, Seifedine; Abed Mohammed, Mazin; Nasser Al-Mhiqani, Mohammed; Al-Waisy, Alaa S.; Nedoma, Jan (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 12/2022)The fog has different features and effects within every single environment. Detection whether there is fog in the image is considered a challenge and giving the type of fog has a substantial enlightening effect on image ...