• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2021
    • vol. 7, nº 2, december 2021
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2021
    • vol. 7, nº 2, december 2021
    • Ver ítem

    Mapping and Deep Analysis of Image Dehazing: Coherent Taxonomy, Datasets, Open Challenges, Motivations, and Recommendations

    Autor: 
    Hameed Abdulkareem, Karrar
    ;
    Arbaiy, Nureize
    ;
    Hussein Arif, Zainab
    ;
    Nasser Al-Mhiqani, Mohammed
    ;
    Abed Mohammed, Mazin
    ;
    Kadry, Seifedine
    ;
    Alkareem Alyasseri, Zaid Abdi
    Fecha: 
    12/2021
    Palabra clave: 
    image dehazing; image defogging; image quality assessment; IJIMAI
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/13074
    DOI: 
    https://doi.org/10.9781/ijimai.2021.11.009
    Dirección web: 
    https://www.ijimai.org/journal/bibcite/reference/3060
    Open Access
    Resumen:
    Our study aims to review and analyze the most relevant studies in the image dehazing field. Many aspects have been deemed necessary to provide a broad understanding of various studies that have been examined through surveying the existing literature. These aspects are as follows: datasets that have been used in the literature, challenges that other researchers have faced, motivations, and recommendations for diminishing the obstacles in the reported literature. A systematic protocol is employed to search all relevant articles on image dehazing, with variations in keywords, in addition to searching for evaluation and benchmark studies. The search process is established on three online databases, namely, IEEE Xplore, Web of Science (WOS), and ScienceDirect (SD), from 2008 to 2021. These indices are selected because they are sufficient in terms of coverage. Along with definition of the inclusion and exclusion criteria, we include 152 articles to the final set. A total of 55 out of 152 articles focused on various studies that conducted image dehazing, and 13 out 152 studies covered most of the review papers based on scenarios and general overviews. Finally, most of the included articles centered on the development of image dehazing algorithms based on real-time scenario (84/152) articles. Image dehazing removes unwanted visual effects and is often considered an image enhancement technique, which requires a fully automated algorithm to work under real-time outdoor applications, a reliable evaluation method, and datasets based on different weather conditions. Many relevant studies have been conducted to meet these critical requirements. We conducted objective image quality assessment experimental comparison of various image dehazing algorithms. In conclusions unlike other review papers, our study distinctly reflects different observations on image dehazing areas. We believe that the result of this study can serve as a useful guideline for practitioners who are looking for a comprehensive view on image dehazing.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai7_2_16_0.pdf
    Tamaño: 657.9Kb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 7, nº 2, december 2021

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    65
    100
    118
    68
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    60
    35
    29
    16

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Adaptive Deep Learning Detection Model for Multi-Foggy Images 

      Hussein Arif, Zainab; Mahmoud, Moamin; Hameed Abdulkareem, Karrar; Kadry, Seifedine; Abed Mohammed, Mazin; Nasser Al-Mhiqani, Mohammed; Al-Waisy, Alaa S.; Nedoma, Jan (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 12/2022)
      The fog has different features and effects within every single environment. Detection whether there is fog in the image is considered a challenge and giving the type of fog has a substantial enlightening effect on image ...
    • Promising Deep Semantic Nuclei Segmentation Models for Multi-Institutional Histopathology Images of Different Organs 

      Hassan, Loay; Saleh, Adel; Abdel-Nasser, Mohamed; Omer, Osama A.; Puig, Domenec (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 06/2021)
      Nuclei segmentation in whole-slide imaging (WSI) plays a crucial role in the field of computational pathology. It is a fundamental task for different applications, such as cancer cell type classification, cancer grading, ...
    • A Novel Smart Grid State Estimation Method Based on Neural Networks 

      Abdel-Nasser, Mohamed; Mahmoud, Karar; Kashef, Heba (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 06/2018)
      The rapid development in smart grids needs efficient state estimation methods. This paper presents a novel method for smart grid state estimation (e.g., voltages, active and reactive power loss) using artificial neural ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja