• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2020
    • vol. 6, nº 1, march 2020
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2020
    • vol. 6, nº 1, march 2020
    • Ver ítem

    Automated ECG Analysis for Localizing Thrombus in Culprit Artery Using Rule Based Information Fuzzy Network

    Autor: 
    Harish, B S
    ;
    Roopa, C K
    Fecha: 
    03/2020
    Palabra clave: 
    classification; fuzzy; ECG; IJIMAI
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/12687
    DOI: 
    https://doi.org/10.9781/ijimai.2019.02.001
    Dirección web: 
    https://www.ijimai.org/journal/bibcite/reference/2709
    Open Access
    Resumen:
    Cardio-vascular diseases are one of the foremost causes of mortality in today’s world. The prognosis for cardiovascular diseases is usually done by ECG signal, which is a simple 12-lead Electrocardiogram (ECG) that gives complete information about the function of the heart including the amplitude and time interval of P-QRST-U segment. This article recommends a novel approach to identify the location of thrombus in culprit artery using the Information Fuzzy Network (IFN). Information Fuzzy Network, being a supervised machine learning technique, takes known evidences based on rules to create a predicted classification model with thrombus location obtained from the vast input ECG data. These rules are well-defined procedures for selecting hypothesis that best fits a set of observations. Results illustrate that the recommended approach yields an accurateness of 92.30%. This novel approach is shown to be a viable ECG analysis approach for identifying the culprit artery and thus localizing the thrombus.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai20206_1_2_pdf_13999.pdf
    Tamaño: 753.4Kb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 6, nº 1, march 2020

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    77
    74
    81
    90
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    70
    66
    79
    33

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Anomaly based Intrusion Detection using Modified Fuzzy Clustering 

      Harish, B S; Kumar, S V A (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 12/2017)
      This paper presents a network anomaly detection method based on fuzzy clustering. Computer security has become an increasingly vital field in computer science in response to the proliferation of private sensitive information. ...
    • Multilayer Feedforward Neural Network for Internet Traffic Classification 

      Harish, B S; Nagadarshan, N; Manju, N (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 03/2020)
      Recently, the efficient internet traffic classification has gained attention in order to improve service quality in IP networks. But the problem with the existing solutions is to handle the imbalanced dataset which has ...
    • Automatic Irony Detection using Feature Fusion and Ensemble Classifier 

      Harish, B S; Kumar, Keerthi (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 12/2019)
      With the advent of micro-blogging sites, users are pioneer in expressing their sentiments and emotions on global issues through text. Automatic detection and classification of sentiments like sarcastic or ironic content ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja