Mostrar el registro sencillo del ítem

dc.contributor.authorHarish, B S
dc.contributor.authorRoopa, C K
dc.date2020-03
dc.date.accessioned2022-03-18T13:07:26Z
dc.date.available2022-03-18T13:07:26Z
dc.identifier.issn1989-1660
dc.identifier.urihttps://reunir.unir.net/handle/123456789/12687
dc.description.abstractCardio-vascular diseases are one of the foremost causes of mortality in today’s world. The prognosis for cardiovascular diseases is usually done by ECG signal, which is a simple 12-lead Electrocardiogram (ECG) that gives complete information about the function of the heart including the amplitude and time interval of P-QRST-U segment. This article recommends a novel approach to identify the location of thrombus in culprit artery using the Information Fuzzy Network (IFN). Information Fuzzy Network, being a supervised machine learning technique, takes known evidences based on rules to create a predicted classification model with thrombus location obtained from the vast input ECG data. These rules are well-defined procedures for selecting hypothesis that best fits a set of observations. Results illustrate that the recommended approach yields an accurateness of 92.30%. This novel approach is shown to be a viable ECG analysis approach for identifying the culprit artery and thus localizing the thrombus.es_ES
dc.language.isoenges_ES
dc.publisherInternational Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)es_ES
dc.relation.ispartofseries;vol. 6, nº 1
dc.relation.urihttps://www.ijimai.org/journal/bibcite/reference/2709es_ES
dc.rightsopenAccesses_ES
dc.subjectclassificationes_ES
dc.subjectfuzzyes_ES
dc.subjectECGes_ES
dc.subjectIJIMAIes_ES
dc.titleAutomated ECG Analysis for Localizing Thrombus in Culprit Artery Using Rule Based Information Fuzzy Networkes_ES
dc.typearticlees_ES
reunir.tag~IJIMAIes_ES
dc.identifier.doihttps://doi.org/10.9781/ijimai.2019.02.001


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem