• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2017
    • vol. 4, nº 6, december 2017
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2017
    • vol. 4, nº 6, december 2017
    • Ver ítem

    Anomaly based Intrusion Detection using Modified Fuzzy Clustering

    Autor: 
    Harish, B S
    ;
    Kumar, S V A
    Fecha: 
    12/2017
    Palabra clave: 
    fuzzy; clustering; anomaly detection; intrusion detection; principal component analysis; robust spatial kernel fuzzy C-means; IJIMAI
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/11826
    DOI: 
    http://doi.org/10.9781/ijimai.2017.05.002
    Dirección web: 
    https://ijimai.org/journal/bibcite/reference/2628
    Open Access
    Resumen:
    This paper presents a network anomaly detection method based on fuzzy clustering. Computer security has become an increasingly vital field in computer science in response to the proliferation of private sensitive information. As a result, Intrusion Detection System has become an indispensable component of computer security. The proposed method consists of three steps: Pre-Processing, Feature Selection and Clustering. In pre-processing step, the duplicate samples are eliminated from the sample set. Next, principal component analysis is adopted to select the most discriminative features. In clustering step, the network samples are clustered using Robust Spatial Kernel Fuzzy C-Means (RSKFCM) algorithm. RSKFCM is a variant of traditional Fuzzy C-Means which considers the neighbourhood membership information and uses kernel distance metric. To evaluate the proposed method, we conducted experiments on standard dataset and compared the results with state-of-the-art methods. We used cluster validity indices, accuracy and false positive rate as performance metrics. Experimental results inferred that, the proposed method achieves better results compared to other methods.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai20174_6_8_pdf_14933.pdf
    Tamaño: 871.6Kb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 4, nº 6, december 2017

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    22
    73
    86
    135
    72
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    11
    82
    48
    76
    27

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Automatic Irony Detection using Feature Fusion and Ensemble Classifier 

      Harish, B S; Kumar, Keerthi (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 12/2019)
      With the advent of micro-blogging sites, users are pioneer in expressing their sentiments and emotions on global issues through text. Automatic detection and classification of sentiments like sarcastic or ironic content ...
    • Sentiment Analysis on IMDb Movie Reviews Using Hybrid Feature Extraction Method 

      Harish, B S; Kumar, Keerthi; Darshan, H K (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 06/2019)
      Social Networking sites have become popular and common places for sharing wide range of emotions through short texts. These emotions include happiness, sadness, anxiety, fear, etc. Analyzing short texts helps in identifying ...
    • Comparative study on ant colony optimization (ACO) and K-Means clustering approaches for jobs scheduling and energy optimization model in Internet of Things (IoT) 

      Kumar, Sumit; Kumar-Solanki, Vijender; Kumar Choudhary, Saket; Selamat, Ali; González-Crespo, Rubén (International Journal of Interactive Multimedia and Artificial Intelligence, 03/2020)
      The concept of Internet of Things (IoT) was proposed by Professor Kevin Ashton of the Massachusetts Institute of Technology (MIT) in 1999. IoT is an environment that people understand in many different ways depending on ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja