• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2019
    • vol. 5, nº 4, march 2019
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2019
    • vol. 5, nº 4, march 2019
    • Ver ítem

    Multilevel Thresholding for Image Segmentation Using an Improved Electromagnetism Optimization Algorithm

    Autor: 
    Hemeida, Ashraf
    ;
    Mansour, Radwa
    ;
    Hussein, M E
    Fecha: 
    03/2019
    Palabra clave: 
    image segmentation; multilevel thresholding; otsu’s entropy; electromagnetic optimization; levy function; IJIMAI
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/12478
    DOI: 
    http://doi.org/10.9781/ijimai.2018.09.001
    Dirección web: 
    https://www.ijimai.org/journal/bibcite/reference/2689
    Open Access
    Resumen:
    Image segmentation is considered one of the most important tasks in image processing, which has several applications in different areas such as; industry agriculture, medicine, etc. In this paper, we develop the electromagnetic optimization (EMO) algorithm based on levy function, EMO-levy, to enhance the EMO performance for determining the optimal multi-level thresholding of image segmentation. In general, EMO simulates the mechanism of attraction and repulsion between charges to develop the individuals of a population. EMO takes random samples from search space within the histogram of image, where, each sample represents each particle in EMO. The quality of each particle is assessed based on Otsu’s or Kapur objective function value. The solutions are updated using EMO operators until determine the optimal objective functions. Finally, this approach produces segmented images with optimal values for the threshold and a few number of iterations. The proposed technique is validated using different standard test images. Experimental results prove the effectiveness and superiority of the proposed algorithm for image segmentation compared with well-known optimization methods.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai_5_4_12_pdf_62616.pdf
    Tamaño: 1.236Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 5, nº 4, march 2019

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    25
    54
    78
    128
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    174
    61
    32
    24

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Selecting Statistical Characteristics of Brain Signals to Detect Epileptic Seizures using Discrete Wavelet Transform and Perceptron Neural Network 

      Esmaeilpour, Mansour; Abbasi, Rezvan (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 09/2017)
      Electroencephalogram signals (EEG) have always been used in medical diagnosis. Evaluation of the statistical characteristics of EEG signals is actually the foundation of all brain signal processing methods. Since the correct ...
    • The Combination of Mammography and MRI for Diagnosing Breast Cancer Using Fuzzy NN and SVM 

      Esmaeilpour, Mansour; Gohariyan, Elham; Shirmohammadi, Mohammad Mehdi (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 09/2017)
      Breast cancer is one of the common cancers among women so that early diagnosing of it can effectively help its treatment in this study, considering combination of Mammography and MRI pictures, we will try to recognize ...
    • Analyzing the EEG Signals in Order to Estimate the Depth of Anesthesia using Wavelet and Fuzzy Neural Networks 

      Esmaeilpour, Mansour; Mohammadi, Ali Reis Ali (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 12/2016)
      Estimating depth of Anesthesia in patients with the objective to administer the right dosage of drug has always attracted the attention of specialists. To study Anesthesia, researchers analyze brain waves since this is the ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja