• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2017
    • vol. 4, nº 5, september 2017
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2017
    • vol. 4, nº 5, september 2017
    • Ver ítem

    The Combination of Mammography and MRI for Diagnosing Breast Cancer Using Fuzzy NN and SVM

    Autor: 
    Esmaeilpour, Mansour
    ;
    Gohariyan, Elham
    ;
    Shirmohammadi, Mohammad Mehdi
    Fecha: 
    09/2017
    Palabra clave: 
    cancer; machine learning; neural network; medicine; IJIMAI
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/11783
    DOI: 
    http://doi.org/10.9781/ijimai.2017.453
    Dirección web: 
    https://ijimai.org/journal/bibcite/reference/2590
    Open Access
    Resumen:
    Breast cancer is one of the common cancers among women so that early diagnosing of it can effectively help its treatment in this study, considering combination of Mammography and MRI pictures, we will try to recognize glands in existing pictures which identify all around of gland complete and precisely and separate it completely. In this method using artificial intelligence algorithm such as Affine transformation, Gabor filter, neural network, and support vector machine, image analysis will be carried out. The accuracy of proposed method is 98.14. In this work a special framework is presented which simplifies cancer diagnosis. The algorithm of proposed method is tested on z16 images. High speed and lack of human error are the most important factors in proposed intelligent system.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai20174_5_3_pdf_18248.pdf
    Tamaño: 940.7Kb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 4, nº 5, september 2017

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    18
    33
    43
    70
    93
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    5
    35
    18
    22
    40

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • The Impact of COVID-19 Management Policies Tailored to Airborne SARS-CoV-2 Transmission: Policy Analysis 

      Telles, Charles Roberto; Roy, Archisman; Ajmal, Mohammad Rehan; Mustafa, Syed Khalid; Ahmad, Mohammad Ayaz; De la Serna Tuya, Juan Moisés (JMIR public health and surveillance, 2021)
      Background: Daily new COVID-19 cases from January to April 2020 demonstrate varying patterns of SARS-CoV-2 transmission across different geographical regions. Constant infection rates were observed in some countries, whereas ...
    • The Impact of COVID-19 Management Policies Tailored to Airborne SARS-CoV-2 Transmission: Policy Analysis (vol 7, e20699, 2021) 

      Telles, Charles Roberto; Roy, Archisman; Ajmal, Mohammad Rehan; Mustafa, Syed Khalid; Ahmad, Mohammad Ayaz; De la Serna Tuya, Juan Moisés; Frigo, Elisandro Pires; Hernández Rosales, Manuel (JMIR public health and surveillance, 2021)
      In “The Impact of COVID-19 Management Policies Tailored to Airborne SARS-CoV-2 Transmission: Policy Analysis” (JMIR Public Health Surveill 2021;7(4):e20699), the authors noted one error. The academic degree of author ...
    • Selecting Statistical Characteristics of Brain Signals to Detect Epileptic Seizures using Discrete Wavelet Transform and Perceptron Neural Network 

      Esmaeilpour, Mansour; Abbasi, Rezvan (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 09/2017)
      Electroencephalogram signals (EEG) have always been used in medical diagnosis. Evaluation of the statistical characteristics of EEG signals is actually the foundation of all brain signal processing methods. Since the correct ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja