• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2016
    • vol. 4, nº 2, december 2016
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2016
    • vol. 4, nº 2, december 2016
    • Ver ítem

    Analyzing the EEG Signals in Order to Estimate the Depth of Anesthesia using Wavelet and Fuzzy Neural Networks

    Autor: 
    Esmaeilpour, Mansour
    ;
    Mohammadi, Ali Reis Ali
    Fecha: 
    12/2016
    Palabra clave: 
    wavelet; classification; fuzzy; neural network; medicine; IJIMAI
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/11618
    DOI: 
    http://doi.org/10.9781/ijimai.2016.422
    Dirección web: 
    https://ijimai.org/journal/bibcite/reference/2572
    Open Access
    Resumen:
    Estimating depth of Anesthesia in patients with the objective to administer the right dosage of drug has always attracted the attention of specialists. To study Anesthesia, researchers analyze brain waves since this is the place which is directly affected by the drug. This study aimed to estimate the depth of Anesthesia using electroencephalogram (EGG) signals, wavelet transform, and adaptive Neuro Fuzzy inference system (ANFIS). ANFIS can estimate the depth of Anesthesia with high accuracy. A set of EEG signals regarding consciousness, moderate Anesthesia, deep Anesthesia, and iso-electric point were collected from the American Society of Anesthesiologists (ASA) and PhysioNet. First, the extracted features were combined using wavelet and spectral analysis after which the target features were selected. Later, the features were classified into four categories. The results obtained revealed that the accuracy of the proposed method was 98.45%. Since the visual analysis of EEG signals is difficult, the proposed method can significantly help anesthesiologists estimate the depth of Anesthesia. Further, the results showed that ANFIS could significantly increase the accuracy of Anesthesia depth estimation. Finally, the system was deemed to be advantageous since it was also capable of updating in real-time situations as well.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai20164_2_2_pdf_16114.pdf
    Tamaño: 2.631Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 4, nº 2, december 2016

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    30
    69
    75
    106
    146
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    11
    59
    91
    48
    66

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Selecting Statistical Characteristics of Brain Signals to Detect Epileptic Seizures using Discrete Wavelet Transform and Perceptron Neural Network 

      Esmaeilpour, Mansour; Abbasi, Rezvan (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 09/2017)
      Electroencephalogram signals (EEG) have always been used in medical diagnosis. Evaluation of the statistical characteristics of EEG signals is actually the foundation of all brain signal processing methods. Since the correct ...
    • The Combination of Mammography and MRI for Diagnosing Breast Cancer Using Fuzzy NN and SVM 

      Esmaeilpour, Mansour; Gohariyan, Elham; Shirmohammadi, Mohammad Mehdi (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 09/2017)
      Breast cancer is one of the common cancers among women so that early diagnosing of it can effectively help its treatment in this study, considering combination of Mammography and MRI pictures, we will try to recognize ...
    • Multilevel Thresholding for Image Segmentation Using an Improved Electromagnetism Optimization Algorithm 

      Hemeida, Ashraf; Mansour, Radwa; Hussein, M E (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 03/2019)
      Image segmentation is considered one of the most important tasks in image processing, which has several applications in different areas such as; industry agriculture, medicine, etc. In this paper, we develop the electromagnetic ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja