• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2017
    • vol. 4, nº 5, september 2017
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2017
    • vol. 4, nº 5, september 2017
    • Ver ítem

    Selecting Statistical Characteristics of Brain Signals to Detect Epileptic Seizures using Discrete Wavelet Transform and Perceptron Neural Network

    Autor: 
    Esmaeilpour, Mansour
    ;
    Abbasi, Rezvan
    Fecha: 
    09/2017
    Palabra clave: 
    accuracy; neural network; medicine; discrete wavelet transforms; multilayer perceptron; IJIMAI
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/11786
    DOI: 
    http://doi.org/10.9781/ijimai.2017.456
    Dirección web: 
    https://ijimai.org/journal/bibcite/reference/2593
    Open Access
    Resumen:
    Electroencephalogram signals (EEG) have always been used in medical diagnosis. Evaluation of the statistical characteristics of EEG signals is actually the foundation of all brain signal processing methods. Since the correct prediction of disease status is of utmost importance, the goal is to use those models that have minimum error and maximum reliability. In anautomatic epileptic seizure detection system, we should be able to distinguish between EEG signals before, during and after seizure. Extracting useful characteristics from EEG data can greatly increase the classification accuracy. In this new approach, we first parse EEG signals to sub-bands in different categories with the help of discrete wavelet transform(DWT) and then we derive statistical characteristics such as maximum, minimum, average and standard deviation for each sub-band. A multilayer perceptron (MLP)neural network was used to assess the different scenarios of healthy and seizure among the collected signal sets. In order to assess the success and effectiveness of the proposed method, the confusion matrix was used and its accuracy was achieved98.33 percent. Due to the limitations and obstacles in analyzing EEG signals, the proposed method can greatly help professionals experimentally and visually in the classification and diagnosis of epileptic seizures.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai20174_5_6_pdf_12024.pdf
    Tamaño: 1.770Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 4, nº 5, september 2017

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    21
    19
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    9
    14

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioAutorización TFG-M

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja