Mostrar el registro sencillo del ítem

dc.contributor.authorRobinson, Y.H.
dc.contributor.authorVimal, S.
dc.contributor.authorKhari, Manju
dc.contributor.authorLópez Hernández, Fernando
dc.contributor.authorGonzález-Crespo, Rubén
dc.date2020
dc.date.accessioned2022-02-15T10:31:45Z
dc.date.available2022-02-15T10:31:45Z
dc.identifier.issn10943420
dc.identifier.urihttps://reunir.unir.net/handle/123456789/12446
dc.description.abstractSatellite images have a very high resolution, which make their automatic processing computationally costly, and they suffer from artifacts making their processing difficult. This paper describes a method for the effective semantic segmentation of satellite images, and compares different object classifiers in terms of accuracy and execution time. In the paper, the image spectrum is used to reduce the computational cost during the segmentation and classification steps. Firstly, artifacts are corrected from the satellite images for facilitating the feature extraction process. After this, semantic representation is used to gather the semantic regions of downscaled images. As the images are very large, this scaling down significantly reduces the computing time with little degradation in the coarse object detection results. A deep neural forest classifier finds potential regions before executing the pixel-based segmentation. Finally, in our experiments, boundary detection and several classifiers are evaluated to find the objects associated with these regions. The paper details the set-up for our tree-based convolutional neural network. The results indicate that this tree-based convolutional neural network outperforms the other surveyed techniques in the literature.es_ES
dc.language.isoenges_ES
dc.publisherSAGE Publications Inc.es_ES
dc.relation.ispartofseries;online
dc.relation.urihttps://journals.sagepub.com/doi/10.1177/1094342020945026es_ES
dc.rightsrestrictedAccesses_ES
dc.subjectboundary detectiones_ES
dc.subjectclassificationes_ES
dc.subjectfeature extractiones_ES
dc.subjectsatellite imageses_ES
dc.subjectsemantic representationes_ES
dc.subjecttree-based convolutional neural networkes_ES
dc.subjectScopuses_ES
dc.subjectJCRes_ES
dc.titleTree-based convolutional neural networks for object classification in segmented satellite imageses_ES
dc.typearticlees_ES
reunir.tag~ARIes_ES
dc.identifier.doihttps://doi.org/10.1177/1094342020945026


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem