• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2018
    • vol. 5, nº 2, september 2018
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2018
    • vol. 5, nº 2, september 2018
    • Ver ítem

    Comparison of Clustering Algorithms for Learning Analytics with Educational Datasets

    Autor: 
    Martínez Navarro, Álvaro
    ;
    Moreno-Ger, Pablo
    Fecha: 
    09/2018
    Palabra clave: 
    clustering; computer languages; data analysis; engineering students; performance evaluation; unsupervised learning; IJIMAI; Emerging
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/12370
    DOI: 
    http://doi.org/10.9781/ijimai.2018.02.003
    Dirección web: 
    https://ijimai.org/journal/bibcite/reference/2653
    Open Access
    Resumen:
    Learning Analytics is becoming a key tool for the analysis and improvement of digital education processes, and its potential benefit grows with the size of the student cohorts generating data. In the context of Open Education, the potentially massive student cohorts and the global audience represent a great opportunity for significant analyses and breakthroughs in the field of learning analytics. However, these potentially huge datasets require proper analysis techniques, and different algorithms, tools and approaches may perform better in this specific context. In this work, we compare different clustering algorithms using an educational dataset. We start by identifying the most relevant algorithms in Learning Analytics and benchmark them to determine, according to internal validation and stability measurements, which algorithms perform better. We analyzed seven algorithms, and determined that K-means and PAM were the best performers among partition algorithms, and DIANA was the best performer among hierarchical algorithms.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai_5_2_1_pdf_84728.pdf
    Tamaño: 1.501Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS
    • vol. 5, nº 2, september 2018

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    42
    33
    75
    184
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    34
    23
    144
    160

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Mining Pre-Grade Academic and Demographic Data to Predict University Dropout 

      Martínez Navarro, Álvaro; Verdú, Elena ; Moreno-Ger, Pablo (Springer Science and Business Media Deutschland GmbH, 2021)
      Digital transformation is enabling institutions to enhance their processes by using data and technology. In education, digital transformation allows improving the learning experience as well as the institution processes. ...
    • Explainable prediction of chronic renal disease in the Colombian population using neural networks and case-based reasoning 

      Vásquez-Morales, Gabriel R.; Martínez-Monterrubio, Sergio M.; Moreno-Ger, Pablo ; Recio-García, Juan A. (IEEE Access, 2019)
      This paper presents a neural network-based classifier to predict whether a person is at risk of developing chronic kidney disease (CKD). The model is trained with the demographic data and medical care information of two ...
    • Challenges of online higher education in the face of the sustainability objectives of the united nations: Carbon footprint, accessibility and social inclusion 

      Perales, Mikel ; Pedraza, Luis ; Moreno-Ger, Pablo ; Bocos, Elvira (Sustainability (Switzerland), 01/10/2019)
      This article analyses three of the Sustainable Development Goals (SDGs) gathered by the 2030 Agenda and adopted by the United Nations, and how online educational models may help to reach these goals. Specifically, the three ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja