• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2018
    • vol. 5, nº 1, june 2018
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2018
    • vol. 5, nº 1, june 2018
    • Ver ítem

    EEG Signal Analysis of Writing and Typing between Adults with Dyslexia and Normal Controls

    Autor: 
    Perera, Perera, Harshani Harshani
    ;
    Shiratuddin, Mohd Fairuz
    ;
    Wong, Kok Wai
    ;
    Fullarton, Kelly
    Fecha: 
    06/2018
    Palabra clave: 
    classification; machine learning; support vector machine; dyslexia; electroencephalography; IJIMAI
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/12365
    DOI: 
    http://doi.org/10.9781/ijimai.2018.04.005
    Dirección web: 
    https://ijimai.org/journal/bibcite/reference/2671
    Open Access
    Resumen:
    EEG is one of the most useful techniques used to represent behaviours of the brain and helps explore valuable insights through the measurement of brain electrical activity. Hence, plays a vital role in detecting neurological conditions. In this paper, we identify some unique EEG patterns pertaining to dyslexia, which is a learning disability with a neurological origin. Although EEG signals hold important insights of brain behaviours, uncovering these insights are not always straightforward due to its complexity. We tackle this using machine learning and uncover unique EEG signals generated in adults with dyslexia during writing and typing as well as optimal EEG electrodes and brain regions for classification. This study revealed that the greater level of difficulties seen in individuals with dyslexia during writing and typing compared to normal controls are reflected in the brainwave signal patterns.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai_5_1_8_pdf_17747.pdf
    Tamaño: 1.378Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 5, nº 1, june 2018

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    957
    1260
    1667
    813
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    125
    134
    143
    72

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Genetic Algorithm for Restricted Maximum k-Satisfiability in the Hopfield Network 

      Kasihmuddin, Mohd Shareduwan Bin Mohd; Mansor, Mohd Asyraf Bin; Sathasivam, Saratha (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 12/2016)
      The restricted Maximum k-Satisfiability MAX- kSAT is an enhanced Boolean satisfiability counterpart that has attracted numerous amount of research. Genetic algorithm has been the prominent optimization heuristic algorithm ...
    • Robust Artificial Immune System in the Hopfield network for Maximum k-Satisfiability 

      Bin Mohd Kasihmuddin, Mohd Shareduwan; Bin Mansor, Mohd Asyraf; Sathasivam, Saratha (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 06/2017)
      Artificial Immune System (AIS) algorithm is a novel and vibrant computational paradigm, enthused by the biological immune system. Over the last few years, the artificial immune system has been sprouting to solve numerous ...
    • Satisfiability Logic Analysis Via Radial Basis Function Neural Network with Artificial Bee Colony Algorithm 

      Kasihmuddin, Mohd Shareduwan Bin Mohd; Mansor, Mohd Asyraf Bin; Abdulhabib Alzaeemi, Shehab; Sathasivam, Saratha (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 06/2021)
      Radial Basis Function Neural Network (RBFNN) is a variant of artificial neural network (ANN) paradigm, utilized in a plethora of fields of studies such as engineering, technology and science. 2 Satisfiability (2SAT) ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja