• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2017
    • vol. 4, nº 4, june 2017
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2017
    • vol. 4, nº 4, june 2017
    • Ver ítem

    Robust Artificial Immune System in the Hopfield network for Maximum k-Satisfiability

    Autor: 
    Bin Mohd Kasihmuddin, Mohd Shareduwan
    ;
    Bin Mansor, Mohd Asyraf
    ;
    Sathasivam, Saratha
    Fecha: 
    06/2017
    Palabra clave: 
    algorithms; neural network; hopfield; artificial immune system; brute force; IJIMAI
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/11761
    DOI: 
    http://doi.org/10.9781/ijimai.2017.448
    Dirección web: 
    https://ijimai.org/journal/bibcite/reference/2607
    Open Access
    Resumen:
    Artificial Immune System (AIS) algorithm is a novel and vibrant computational paradigm, enthused by the biological immune system. Over the last few years, the artificial immune system has been sprouting to solve numerous computational and combinatorial optimization problems. In this paper, we introduce the restricted MAX-kSAT as a constraint optimization problem that can be solved by a robust computational technique. Hence, we will implement the artificial immune system algorithm incorporated with the Hopfield neural network to solve the restricted MAX-kSAT problem. The proposed paradigm will be compared with the traditional method, Brute force search algorithm integrated with Hopfield neural network. The results demonstrate that the artificial immune system integrated with Hopfield network outperforms the conventional Hopfield network in solving restricted MAX-kSAT. All in all, the result has provided a concrete evidence of the effectiveness of our proposed paradigm to be applied in other constraint optimization problem. The work presented here has many profound implications for future studies to counter the variety of satisfiability problem.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai20174_4_8_pdf_92087.pdf
    Tamaño: 858.9Kb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 4, nº 4, june 2017

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    19
    36
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    32
    29

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Genetic Algorithm for Restricted Maximum k-Satisfiability in the Hopfield Network 

      Kasihmuddin, Mohd Shareduwan Bin Mohd; Mansor, Mohd Asyraf Bin; Sathasivam, Saratha (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 12/2016)
      The restricted Maximum k-Satisfiability MAX- kSAT is an enhanced Boolean satisfiability counterpart that has attracted numerous amount of research. Genetic algorithm has been the prominent optimization heuristic algorithm ...
    • Satisfiability Logic Analysis Via Radial Basis Function Neural Network with Artificial Bee Colony Algorithm 

      Kasihmuddin, Mohd Shareduwan Bin Mohd; Mansor, Mohd Asyraf Bin; Abdulhabib Alzaeemi, Shehab; Sathasivam, Saratha (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 06/2021)
      Radial Basis Function Neural Network (RBFNN) is a variant of artificial neural network (ANN) paradigm, utilized in a plethora of fields of studies such as engineering, technology and science. 2 Satisfiability (2SAT) ...
    • Improved Differential Evolution Algorithm for Parameter Estimation to Improve the Production of Biochemical Pathway 

      Khim Chong, Chuii; Saberi Mohamad, Mohd; Deris, Safaai; Shahir Shamsir, Mohd; Wen Choon, Yee; En Chai, Lian (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 06/2012)
      This paper introduces an improved Differential Evolution algorithm (IDE) which aims at improving its performance in estimating the relevant parameters for metabolic pathway data to simulate glycolysis pathway for yeast. ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioAutorización TFG-M

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja