• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2021
    • vol. 6, nº 6, june 2021
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2021
    • vol. 6, nº 6, june 2021
    • Ver ítem

    Satisfiability Logic Analysis Via Radial Basis Function Neural Network with Artificial Bee Colony Algorithm

    Autor: 
    Kasihmuddin, Mohd Shareduwan Bin Mohd
    ;
    Mansor, Mohd Asyraf Bin
    ;
    Abdulhabib Alzaeemi, Shehab
    ;
    Sathasivam, Saratha
    Fecha: 
    06/2021
    Palabra clave: 
    artificial bee colony algorithm; radial basis function neural network; 2 satisfiability; logic; IJIMAI
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/12955
    DOI: 
    https://doi.org/10.9781/ijimai.2020.06.002
    Dirección web: 
    https://www.ijimai.org/journal/bibcite/reference/2790
    Open Access
    Resumen:
    Radial Basis Function Neural Network (RBFNN) is a variant of artificial neural network (ANN) paradigm, utilized in a plethora of fields of studies such as engineering, technology and science. 2 Satisfiability (2SAT) programming has been coined as a prominent logical rule that defines the identity of RBFNN. In this research, a swarm-based searching algorithm namely, the Artificial Bee Colony (ABC) will be introduced to facilitate the training of RBFNN. Worth mentioning that ABC is a new population-based metaheuristics algorithm inspired by the intelligent comportment of the honey bee hives. The optimization pattern in ABC was found fruitful in RBFNN since ABC reduces the complexity of the RBFNN in optimizing important parameters. The effectiveness of ABC in RBFNN has been examined in terms of various performance evaluations. Therefore, the simulation has proved that the ABC complied efficiently in tandem with the Radial Basis Neural Network with 2SAT according to various evaluations such as the Root Mean Square Error (RMSE), Sum of Squares Error (SSE), Mean Absolute Percentage Error (MAPE), and CPU Time. Overall, the experimental results have demonstrated the capability of ABC in enhancing the learning phase of RBFNN-2SAT as compared to the Genetic Algorithm (GA), Differential Evolution (DE) algorithm and Particle Swarm Optimization (PSO) algorithm.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai_6_6_17.pdf
    Tamaño: 747.9Kb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 6, nº 6, june 2021

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    71
    88
    91
    152
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    27
    50
    53
    40

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Genetic Algorithm for Restricted Maximum k-Satisfiability in the Hopfield Network 

      Kasihmuddin, Mohd Shareduwan Bin Mohd; Mansor, Mohd Asyraf Bin; Sathasivam, Saratha (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 12/2016)
      The restricted Maximum k-Satisfiability MAX- kSAT is an enhanced Boolean satisfiability counterpart that has attracted numerous amount of research. Genetic algorithm has been the prominent optimization heuristic algorithm ...
    • Robust Artificial Immune System in the Hopfield network for Maximum k-Satisfiability 

      Bin Mohd Kasihmuddin, Mohd Shareduwan; Bin Mansor, Mohd Asyraf; Sathasivam, Saratha (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 06/2017)
      Artificial Immune System (AIS) algorithm is a novel and vibrant computational paradigm, enthused by the biological immune system. Over the last few years, the artificial immune system has been sprouting to solve numerous ...
    • Improved Differential Evolution Algorithm for Parameter Estimation to Improve the Production of Biochemical Pathway 

      Khim Chong, Chuii; Saberi Mohamad, Mohd; Deris, Safaai; Shahir Shamsir, Mohd; Wen Choon, Yee; En Chai, Lian (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 06/2012)
      This paper introduces an improved Differential Evolution algorithm (IDE) which aims at improving its performance in estimating the relevant parameters for metabolic pathway data to simulate glycolysis pathway for yeast. ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja