Ball convergence theorems and the convergence planes of an iterative method for nonlinear equations
Autor:
Magreñán, Á. Alberto (1)
; Argyros, Ioannis K
Fecha:
11/2015Palabra clave:
Tipo de Ítem:
Articulo Revista IndexadaResumen:
We study the local convergence of a method presented by Cordero et al. of convergence order at least five to approximate a locally unique solution of a nonlinear equation. These studies show the convergence under hypotheses on the third derivative or even higher. The convergence in this study is shown under hypotheses on the first derivative. Hence, the applicability of the method is expanded. The dynamical analysis of this method is also studied. Finally, numerical examples are also provided to show that our results apply to solve equations in cases where earlier studies cannot apply. © 2015, Sociedad Española de Matemática Aplicada.
Este ítem aparece en la(s) siguiente(s) colección(es)
Estadísticas de uso
Año |
2012 |
2013 |
2014 |
2015 |
2016 |
2017 |
2018 |
2019 |
2020 |
2021 |
2022 |
Vistas |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
27 |
15 |
Descargas |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
Ítems relacionados
Mostrando ítems relacionados por Título, autor o materia.
-
Local convergence comparison between frozen Kurchatov and Schmidt–Schwetlick–Kurchatov solvers with applications
Moysi, Alejandro; Argyros, Michael I; Argyros, Ioannis K; Magreñán, Á. Alberto (1); Sarría, Íñigo (1); González Sánchez, Daniel (Journal of Computational and Applied Mathematics, 04/2022)In this work we are going to use the Kurchatov–Schmidt–Schwetlick-like solver (KSSLS) and the Kurchatov-like solver (KLS) to locate a zero, denoted by x∗ of operator F. We define F as F:D⊆B1⟶B2 where B1 and B2 stand for ... -
Extending the domain of starting points for Newton's method under conditions on the second derivative
Argyros, Ioannis K; Ezquerro, J A; Hernández-Verón, M A; Magreñán, Á. Alberto (1) (Journal of Computational and Applied Mathematics, 10/2018)In this paper, we propose a center Lipschitz condition for the second Frechet derivative together with the use of restricted domains in order to improve the domain of starting points for Newton's method. In addition, we ... -
Optimizing the applicability of a theorem by F. Potra for Newton-like methods
Magreñán, Á. Alberto (1); Argyros, Ioannis K (Applied Mathematics and Computation, 09/2014)We present a new sufficient semilocal convergence conditions for Newton-like methods in order to approximate a locally unique solution of an equation in a Banach space setting. This way, we expand the applicability of these ...