Mostrar el registro sencillo del ítem

dc.contributor.authorMagreñán, Á. Alberto
dc.contributor.authorArgyros, Ioannis K
dc.date2015-11
dc.date.accessioned2021-05-07T08:40:38Z
dc.date.available2021-05-07T08:40:38Z
dc.identifier.issn2254-3902
dc.identifier.urihttps://reunir.unir.net/handle/123456789/11296
dc.description.abstractWe study the local convergence of a method presented by Cordero et al. of convergence order at least five to approximate a locally unique solution of a nonlinear equation. These studies show the convergence under hypotheses on the third derivative or even higher. The convergence in this study is shown under hypotheses on the first derivative. Hence, the applicability of the method is expanded. The dynamical analysis of this method is also studied. Finally, numerical examples are also provided to show that our results apply to solve equations in cases where earlier studies cannot apply. © 2015, Sociedad Española de Matemática Aplicada.es_ES
dc.language.isoenges_ES
dc.publisherSeMA Journales_ES
dc.relation.ispartofseries;vol. 71, nº 1
dc.relation.urihttps://link.springer.com/article/10.1007%2Fs40324-015-0047-8es_ES
dc.rightsrestrictedAccesses_ES
dc.subjectball convergencees_ES
dc.subjectconvergence planes and nonlinear equationses_ES
dc.subjectlocal convergencees_ES
dc.subjectorder of convergencees_ES
dc.subjectScopuses_ES
dc.titleBall convergence theorems and the convergence planes of an iterative method for nonlinear equationses_ES
dc.typeArticulo Revista Indexadaes_ES
reunir.tag~ARIes_ES
dc.identifier.doihttps://doi.org/10.1007/s40324-015-0047-8


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem