• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    A complex dynamical approach of Chebyshev’s method

    Autor: 
    García-Olivo, Martín
    ;
    Gutiérrez, José M
    ;
    Magreñán, Á. Alberto (1)
    Fecha: 
    11/2015
    Palabra clave: 
    chebyshev’s method; complex dynamics; iterative methods; nonlinear equations; Scopus
    Tipo de Ítem: 
    Articulo Revista Indexada
    URI: 
    https://reunir.unir.net/handle/123456789/11295
    DOI: 
    http://doi.org/10.1007/s40324-015-0046-9
    Dirección web: 
    https://link.springer.com/article/10.1007%2Fs40324-015-0046-9
    Resumen:
    The aim of this paper is to investigate the iterative root-finding Chebyshev’s method from a dynamical perspective. We analyze the behavior of the method applied to low degree polynomials. In this work we focus on the complex case. Actually, we show the existence of extraneous fixed points for Chebyshev’s, that is fixed points of the iterative method that are not roots of the involved polynomial. This fact is a distinguishing feature in the dynamical study of Chebyshev’s method compared with other known iterative methods such as Newton’s or Halley’s methods. In addition, we provide some analytic, geometrical and graphical arguments to explain when and why the method fails, that is, there exists open set of initial points such that the corresponding iterative sequence does not converge to any of the roots. © 2015, Sociedad Española de Matemática Aplicada.
    Mostrar el registro completo del ítem
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    38
    16
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • A first overview on the real dynamics of Chebyshev's method 

      García-Olivo, Martín; Gutiérrez, José M; Magreñán, Á. Alberto (1) (Journal of Computational and Applied Mathematics, 07/2017)
      In this paper we explore some properties of the well known root-finding Chebyshev’s method applied to polynomials defined on the real field. In particular we are interested in showing the existence of extraneous fixed ...
    • On the behavior of chebyshev's method applied to cubic polynomials 

      Magreñán, Á. Alberto (1); García-Olivo, Martín; Gutiérrez, José M (Civil-Comp Proceedings, 2014)
      This paper shows the dynamical behavior of the well-known Chebyshev method when it is applied to cubic polynomials. We present the scaling theorem associated to the method and we study the real dynamics of the method. The ...
    • Real qualitative behavior of a fourth-order family of iterative methods by using the convergence plane 

      Magreñán, Á. Alberto (1); Cordero, Alicia; Gutiérrez, José M; Torregrosa, Juan Ramón (Mathematics and Computers in Simulation, 11/2014)
      The real dynamics of a family of fourth-order iterative methods is studied when it is applied on quadratic polynomials. A Scaling Theorem is obtained and the conjugacy classes are analyzed. The convergence plane is used ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioAutorización TFG-M

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja