Mostrar el registro sencillo del ítem

dc.contributor.authorGarcía-Olivo, Martín
dc.contributor.authorGutiérrez, José M
dc.contributor.authorMagreñán, Á. Alberto
dc.date2015-11
dc.date.accessioned2021-05-07T08:20:22Z
dc.date.available2021-05-07T08:20:22Z
dc.identifier.issn2254-3902
dc.identifier.urihttps://reunir.unir.net/handle/123456789/11295
dc.description.abstractThe aim of this paper is to investigate the iterative root-finding Chebyshev’s method from a dynamical perspective. We analyze the behavior of the method applied to low degree polynomials. In this work we focus on the complex case. Actually, we show the existence of extraneous fixed points for Chebyshev’s, that is fixed points of the iterative method that are not roots of the involved polynomial. This fact is a distinguishing feature in the dynamical study of Chebyshev’s method compared with other known iterative methods such as Newton’s or Halley’s methods. In addition, we provide some analytic, geometrical and graphical arguments to explain when and why the method fails, that is, there exists open set of initial points such that the corresponding iterative sequence does not converge to any of the roots. © 2015, Sociedad Española de Matemática Aplicada.es_ES
dc.language.isoenges_ES
dc.publisherSeMA Journales_ES
dc.relation.ispartofseries;vol. 71, nº 1
dc.relation.urihttps://link.springer.com/article/10.1007%2Fs40324-015-0046-9es_ES
dc.rightsrestrictedAccesses_ES
dc.subjectchebyshev’s methodes_ES
dc.subjectcomplex dynamicses_ES
dc.subjectiterative methodses_ES
dc.subjectnonlinear equationses_ES
dc.subjectScopuses_ES
dc.titleA complex dynamical approach of Chebyshev’s methodes_ES
dc.typeArticulo Revista Indexadaes_ES
reunir.tag~ARIes_ES
dc.identifier.doihttp://doi.org/10.1007/s40324-015-0046-9


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem