The majorization method in the Kantorovich theory
Autor:
Magreñán, Á. Alberto (1)
; Argyros, Ioannis K
Fecha:
2018Palabra clave:
Tipo de Ítem:
bookPartResumen:
The goal in this chapter is to present some improvements related to the convergence of Newton's and modified Newton's method by means of introducing and using the center Lipschitz condition. Using both conditions we obtain tighter majorizing sequences that allow us to obtain weaker convergence criteria. Numerical examples and applications validating the theoretical results are also presented.
Descripción:
Capítulo del libro "Contemporary study of iterative methods: convergence, dynamics and applications"
Este ítem aparece en la(s) siguiente(s) colección(es)
Estadísticas de uso
Año |
2012 |
2013 |
2014 |
2015 |
2016 |
2017 |
2018 |
2019 |
2020 |
2021 |
2022 |
Vistas |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
26 |
8 |
Descargas |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
Ítems relacionados
Mostrando ítems relacionados por Título, autor o materia.
-
Local convergence comparison between frozen Kurchatov and Schmidt–Schwetlick–Kurchatov solvers with applications
Moysi, Alejandro; Argyros, Michael I; Argyros, Ioannis K; Magreñán, Á. Alberto (1); Sarría, Íñigo (1); González Sánchez, Daniel (Journal of Computational and Applied Mathematics, 04/2022)In this work we are going to use the Kurchatov–Schmidt–Schwetlick-like solver (KSSLS) and the Kurchatov-like solver (KLS) to locate a zero, denoted by x∗ of operator F. We define F as F:D⊆B1⟶B2 where B1 and B2 stand for ... -
Extending the domain of starting points for Newton's method under conditions on the second derivative
Argyros, Ioannis K; Ezquerro, J A; Hernández-Verón, M A; Magreñán, Á. Alberto (1) (Journal of Computational and Applied Mathematics, 10/2018)In this paper, we propose a center Lipschitz condition for the second Frechet derivative together with the use of restricted domains in order to improve the domain of starting points for Newton's method. In addition, we ... -
Optimizing the applicability of a theorem by F. Potra for Newton-like methods
Magreñán, Á. Alberto (1); Argyros, Ioannis K (Applied Mathematics and Computation, 09/2014)We present a new sufficient semilocal convergence conditions for Newton-like methods in order to approximate a locally unique solution of an equation in a Banach space setting. This way, we expand the applicability of these ...