• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    Family of Multiple-Root Finding Iterative Methods Based on Weight Functions

    Autor: 
    Chicharro, Francisco Israel
    ;
    Contreras, Rafael Andrés
    ;
    Garrido, Neus
    Fecha: 
    09/12/2020
    Palabra clave: 
    multiple-roots; iterative method; weight function; complex dynamics; JCR; Scopus
    Revista / editorial: 
    Mathematics
    MDPI
    Citación: 
    Chicharro, F.I.; Contreras, R.A.; Garrido, N. A Family of Multiple-Root Finding Iterative Methods Based on Weight Functions. Mathematics 2020, 8, 2194.
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/10796
    DOI: 
    https://doi.org/10.3390/math8122194
    Dirección web: 
    https://www.mdpi.com/2227-7390/8/12/2194
    Open Access
    Resumen:
    A straightforward family of one-point multiple-root iterative methods is introduced. The family is generated using the technique of weight functions. The order of convergence of the family is determined in its convergence analysis, which shows the constraints that the weight function must satisfy to achieve order three. In this sense, a family of iterative methods can be obtained with a suitable design of the weight function. That is, an iterative algorithm that depends on one or more parameters is designed. This family of iterative methods, starting with proper initial estimations, generates a sequence of approximations to the solution of a problem. A dynamical analysis is also included in the manuscript to study the long-term behavior of the family depending on the parameter value and the initial guess considered. This analysis reveals the good properties of the family for a wide range of values of the parameter. In addition, a numerical test on academic and engineering multiple-root functions is performed.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: mathematics-08-02194-v2.pdf
    Tamaño: 2.165Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    30
    46
    44
    38
    62
    129
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    20
    40
    64
    98
    44
    68

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Design and Complex Dynamics of Potra–Pták-Type Optimal Methods for Solving Nonlinear Equations and Its Applications 

      Chand, Prem Bahadur; Chicharro, Francisco Israel ; Garrido, Neus; Jain, Pankaj (MDPIMathematics, 11/10/2019)
      In this paper, using the idea of weight functions on the Potra–Pták method, an optimal fourth order method, a non optimal sixth order method, and a family of optimal eighth order methods are proposed. These methods are ...
    • Stability and applicability of iterative methods with memory 

      Chicharro, Francisco Israel ; Cordero, Alicia; Garrido, Neus; Torregrosa, Juan Ramón (Journal of Mathematical Chemistry, 15/03/2019)
      Based on the third-order Traub’s method, two iterative schemes with memory are introduced. The proper inclusion of accelerating parameters allows the introduction of memory. Therefore, the order of convergence of the ...
    • On the improvement of the order of convergence of iterative methods for solving nonlinear systems by means of memory 

      Chicharro, Francisco Israel ; Cordero, Alicia; Garrido, Neus ; Torregrosa, Juan Ramón (Applied Mathematics Letters, 06/2020)
      Iterative methods with memory for solving nonlinear systems have been designed. For approximating the accelerating parameters the Kurchatov's divided difference is used as an approximation of the derivative of second order. ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja