• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Congresos
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Congresos
    • Ver ítem

    Suitable approximations for the self-accelerating parameters in iterative methods with memory

    Autor: 
    Chicharro, Francisco Israel
    ;
    Cordero, Alicia
    ;
    Garrido, Neus
    ;
    Torregrosa, Juan Ramón
    Fecha: 
    03/12/2020
    Palabra clave: 
    basin of attraction; accelerator parameter; iterative methods with memory
    Tipo de Ítem: 
    conferenceObject
    URI: 
    https://reunir.unir.net/handle/123456789/10795
    Dirección web: 
    https://jornadas.imm.upv.es/proceedings/Modelling2020.pdf
    Open Access
    Resumen:
    Solving the nonlinear equation f(x)=0 is a common problem in several areas of Science and Engineering. Since exact solutions of the nonlinear equation are hardly available, scientists best rely on numerical solutions, such as those given by iterative methods. Iterative procedures can be classified according to different criteria: the order of convergence, the presence of derivatives or the number of previous iterations to obtain the current one, among others. Focusing on the last type of schemes, they are known as iterative methods with memory. The major advantage of this sort of methods is to enhance the order of convergence of the original method without introducing new evaluations of f. One technique to obtain iterative schemes with memory starts with an iterative method without memory that includes a parameter. Depending on the error equation of the method, the parameter can be replaced by an expression that includes the previous iterations. The strategy to obtain these expressions is essential. In this work we propose suitable approximations that are present in the literature for different iterative methods with memory. On the one hand, the polynomials approximation, such as Newton's interpolation polynomial. On the other hand, the non-polynomials approximation, such as Padé's approximants. Finally, we decide which is the most suitable choice in terms of convergence and stability.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ChicharroMMEHB2020.pdf
    Tamaño: 5.556Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Congresos

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    17
    36
    13
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    32
    23
    6

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Stability and applicability of iterative methods with memory 

      Chicharro, Francisco Israel (1); Cordero, Alicia; Garrido, Neus; Torregrosa, Juan Ramón (Journal of Mathematical Chemistry, 15/03/2019)
      Based on the third-order Traub’s method, two iterative schemes with memory are introduced. The proper inclusion of accelerating parameters allows the introduction of memory. Therefore, the order of convergence of the ...
    • Generating Root-Finder Iterative Methods of Second Order: Convergence and Stability 

      Chicharro, Francisco Israel (1); Cordero, Alicia; Garrido, Neus; Torregrosa, Juan Ramón (Axioms, 06/05/2019)
      In this paper, a simple family of one-point iterative schemes for approximating the solutions of nonlinear equations, by using the procedure of weight functions, is derived. The convergence analysis is presented, showing ...
    • Anomalies in the convergence of Traub‐type methods with memory 

      Chicharro, Francisco Israel; Cordero, Alicia; Garrido, Neus; Torregrosa, Juan Ramón (Computational and Mathematical Methods, 06/08/2019)
      The stability analysis of a new family of iterative methods with memory isintroduced. This family, designed from Traub's method, allows to add memorythrough the introduction of an accelerating parameter. Hence, the speed ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioAutorización TFG-M

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja