• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    An Evolutionary SVM Model for DDOS Attack Detection in Software Defined Networks

    Autor: 
    Sahoo, Kshira Sagar
    ;
    Tripathy, Bata Krishna
    ;
    Naik, Kshirasagar
    ;
    Ramasubbareddy, Somula
    ;
    Balusamy, Balamurugan
    ;
    Khari, Manju
    ;
    Burgos, Daniel
    Fecha: 
    2020
    Palabra clave: 
    support vector machines; computer crime; feature extraction; genetic algorithms; control systems; machine learning; DDoS attack; GA; KPCA; N-RB; SDN; SVM; JCR; Scopus
    Revista / editorial: 
    IEEE ACCESS
    Tipo de Ítem: 
    Articulo Revista Indexada
    URI: 
    https://reunir.unir.net/handle/123456789/10793
    DOI: 
    https://doi.org/10.1109/ACCESS.2020.3009733
    Dirección web: 
    https://ieeexplore.ieee.org/document/9142183
    Open Access
    Resumen:
    Software-Defined Network (SDN) has become a promising network architecture in current days that provide network operators more control over the network infrastructure. The controller, also called as the operating system of the SDN, is responsible for running various network applications and maintaining several network services and functionalities. Despite all its capabilities, the introduction of various architectural entities of SDN poses many security threats and potential targets. Distributed Denial of Services (DDoS) is a rapidly growing attack that poses a tremendous threat to the Internet. As the control layer is vulnerable to DDoS attacks, the goal of this paper is to detect the attack traffic, by taking the centralized control aspect of SDN. Nowadays, in the field of SDN, various machine learning (ML) techniques are being deployed for detecting malicious traffic. Despite these works, choosing the relevant features and accurate classifiers for attack detection is an open question. For better detection accuracy, in this work, Support Vector Machine (SVM) is assisted by kernel principal component analysis (KPCA) with genetic algorithm (GA). In the proposed SVM model, KPCA is used for reducing the dimension of feature vectors, and GA is used for optimizing different SVM parameters. In order to reduce the noise caused by feature differences, an improved kernel function (N-RBF) is proposed. The experimental results show that compared to single-SVM, the proposed model achieves more accurate classification with better generalization. Moreover, the proposed model can be embedded within the controller to define security rules to prevent possible attacks by the attackers.
    Mostrar el registro completo del ítem
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    44
    69
    77
    65
    72
    106
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Optimized test suites for automated testing using different optimization techniques 

      Khari, Manju; Kumar, Prabbat; Burgos, Daniel ; González-Crespo, Rubén (Soft Computing, 2017)
      Automated testing mitigates the risk of test maintenance failure, selects the optimized test suite, improves efficiency and hence reduces cost and time consumption. This paper is based on the development of an automated ...
    • Enhanced resource allocation in mobile edge computing using reinforcement learning based MOACO algorithm for IIOT 

      Vimal, S.; Khari, Manju; Dey, Nilanjan; González-Crespo, Rubén ; Harold Robinson, Yesudhas (Computer Communications, 01/02/2020)
      The Mobile networks deploy and offers a multiaspective approach for various resource allocation paradigms and the service based options in the computing segments with its implication in the Industrial Internet of Things ...
    • Fingerprint image enhancement and reconstruction using the orientation and phase reconstruction 

      Gupta, Rashmi; Khari, Manju; Gupta, Deepti; González-Crespo, Rubén (Information Sciences, 08/2020)
      Fingerprints are the one of the most important means in the forensics as a means of identification of the criminals owning to the uniqueness and the distinct features in them. Fingerprint identification is considered as ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja