• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    Meta-rules: Improving adaptation in recommendation systems

    Autor: 
    Romero Zaldivar, Vicente Arturo
    ;
    Burgos, Daniel (1)
    Fecha: 
    2010
    Palabra clave: 
    Scopus(2)
    Tipo de Ítem: 
    conferenceObject
    URI: 
    https://reunir.unir.net/handle/123456789/10528
    Resumen:
    Recommendation Systems are central in current applications to help the user find useful informat ion spread in large amounts of post. videos or social networks. Most Reconunendation Systems are more effective when huge amounts of user data are available in order to calculate similarit ies between users. Educational applications are not popular enough in order to generate large amount of data. In this context, nile-based Reco tumendarion Systems are a better solution. Rules are in most cases written a priori by dom ain experts: they can offer good recomiuendat ions with even no application of usage informat ion. However large rule-sets are hard to maint ain. reengineer and adapt to user goals and pref erences. Meta-rules. rules that generate rules, can generalize a rule-set providing bases for adaptation. reengineering and on the fly generat ion. In this paper. the authors expose the benef its of meta-rules implemented as part of a metar ule based Recommendation System. This is an effective solution to provide a personalized reco mmendation to the learner, and constitutes a new approach in rule-based Recommendation Systems.
    Descripción: 
    Ponencia de la conferencia "18th Intl. Workshop on Personalization and Recommendation on the Web and Beyond, ABIS 2010; Kassel; Germany; 4 October 2010 through 6 October 2010"
    Mostrar el registro completo del ítem
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    29
    25
    12
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Meta-Mender: A meta-rule based recommendation system for educational applications 

      Romero Zaldivar, Vicente Arturo; Burgos, Daniel (1) (Procedia Computer Science, 2010)
      Recommenders are central in current applications to help the user find useful information spread in large amounts of data. Most Recommenders are more effective when huge amounts of user data are available in order to ...
    • Monitoring student progress using virtual appliances: A case study 

      Romero Zaldivar, Vicente Arturo; Pardo, Abelardo; Burgos, Daniel (1); Delgado Kloos, Carlos (Computers and Education, 05/2012)
      The interactions that students have with each other, with the instructors, and with educational resources are valuable indicators of the effectiveness of a learning experience. The increasing use of information and ...
    • Meta-rules: Improving adaptation in recommendation systems 

      Romero Zaldivar, Vicente Arturo; Burgos, Daniel (1) (LWA. Lernen, Wissen und Adaptivitat, 2010)
      Recommendation Systems are central in current applications to help the user find useful information spread in large amounts of post, videos or social networks. Most Recommendation Systems are more effective when huge amounts ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioAutorización TFG-M

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja