• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    Meta-rules: Improving adaptation in recommendation systems

    Autor: 
    Romero Zaldivar, Vicente Arturo
    ;
    Burgos, Daniel
    Fecha: 
    2010
    Palabra clave: 
    Scopus(2)
    Revista / editorial: 
    LWA. Lernen, Wissen und Adaptivitat
    Tipo de Ítem: 
    conferenceObject
    URI: 
    https://reunir.unir.net/handle/123456789/10389
    Dirección web: 
    https://dl.gi.de/handle/20.500.12116/5087
    Resumen:
    Recommendation Systems are central in current applications to help the user find useful information spread in large amounts of post, videos or social networks. Most Recommendation Systems are more effective when huge amounts of user data are available in order to calculate similarities between users. Educational applications are not popular enough in order to generate large amount of data. In this context, rule-based Recommendation Systems are a better solution. Rules are in most cases written a priori by domain experts; they can offer good recommendations with even no application of usage information. However large rule-sets are hard to maintain, reengineer and adapt to user goals and preferences. Meta-rules, rules that generate rules, can generalize a rule-set providing bases for adaptation, reengineering and on the fly generation. In this paper, the authors expose the benefits of meta-rules implemented as part of a metarule based Recommendation System. This is an effective solution to provide a personalized recommendation to the learner, and constitutes a new approach in rule-based Recommendation Systems.
    Mostrar el registro completo del ítem
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    29
    25
    43
    51
    64
    61
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Meta-Mender: A meta-rule based recommendation system for educational applications 

      Romero Zaldivar, Vicente Arturo; Burgos, Daniel (Procedia Computer Science, 2010)
      Recommenders are central in current applications to help the user find useful information spread in large amounts of data. Most Recommenders are more effective when huge amounts of user data are available in order to ...
    • Automatic Discovery of Complementary Learning Resources 

      Romero Zaldivar, Vicente Arturo; Crespo García, Raquel M; Burgos, Daniel ; Delgado Kloos, Carlos; Pardo, Abelardo (Towards Ubiquitous Learning. EC-TEL 2011, 2011)
      Students in a learning experience can be seen as a community working simultaneously (and in some cases collaboratively) in a set of activities. During these working sessions, students carry out numerous actions that affect ...
    • Meta-rule based recommender systems for educational applications 

      Romero Zaldivar, Vicente Arturo; Burgos, Daniel ; Pardo, Abelardo (IGI GlobalEducational Recommender Systems and Technologies: Practices and Challenges, 2011)
      Recommendation Systems are central in current applications to help the user find relevant information spread in large amounts of data. Most Recommendation Systems are more effective when huge amounts of user data are ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja