Mostrar el registro sencillo del ítem

dc.contributor.authorArgyros, Ioannis K
dc.contributor.authorMagreñán, Á. Alberto
dc.contributor.authorMoreno-Mediavilla, Daniel (1)
dc.contributor.authorOrcos, Lara (1)
dc.contributor.authorSicilia, Juan Antonio (1)
dc.date2020-01
dc.date.accessioned2020-06-17T05:44:48Z
dc.date.available2020-06-17T05:44:48Z
dc.identifier.issn1572-8897
dc.identifier.urihttps://reunir.unir.net/handle/123456789/10187
dc.description.abstractIn this paper we study the problem of analyzing the convergence both local and semilocal of inexact Newton-like methods for approximating the solution of an equation in which there exists nondifferentiability. We will impose conditions, to ensure that the method converges, are weaker than in the ones imposed in previous results. The theoretical results shown in this study are applied to a chemical application in order to be proven.es_ES
dc.language.isoenges_ES
dc.publisherJournal of Mathematical Chemistryes_ES
dc.relation.ispartofseries;vol. 58, nº 3
dc.relation.urihttps://link.springer.com/article/10.1007/s10910-020-01101-w#citeases_ES
dc.rightsrestrictedAccesses_ES
dc.subjectinexact Newton-like methodses_ES
dc.subjectunified convergencees_ES
dc.subjectnondifferentiable equationes_ES
dc.subjectweaker conditionses_ES
dc.subjectJCRes_ES
dc.subjectScopuses_ES
dc.titleWeaker conditions for inexact mutitpoint Newton-like methodses_ES
dc.typeArticulo Revista Indexadaes_ES
reunir.tag~ARIes_ES
dc.identifier.doihttps://doi.org/10.1007/s10910-020-01101-w


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem