• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    Comparative study on ant colony optimization (ACO) and K-Means clustering approaches for jobs scheduling and energy optimization model in Internet of Things (IoT)

    Autor: 
    Kumar, Sumit
    ;
    Kumar-Solanki, Vijender
    ;
    Kumar Choudhary, Saket
    ;
    Selamat, Ali
    ;
    González-Crespo, Rubén (1)
    Fecha: 
    03/2020
    Palabra clave: 
    ant colony optimization (ACO); energy consumption; Internet of Things (IoT); K-means; algorithm; response time; message scheduling; JCR
    Tipo de Ítem: 
    Articulo Revista Indexada
    URI: 
    https://reunir.unir.net/handle/123456789/10149
    DOI: 
    https://doi.org/10.9781/ijimai.2020.01.003
    Dirección web: 
    https://www.ijimai.org/journal/bibcite/reference/2750
    Open Access
    Resumen:
    The concept of Internet of Things (IoT) was proposed by Professor Kevin Ashton of the Massachusetts Institute of Technology (MIT) in 1999. IoT is an environment that people understand in many different ways depending on their requirement, point of view and purpose. When transmitting data in IoT environment, distribution of network traffic fluctuates frequently. If links of the network or nodes fail randomly, then automatically new nodes get added frequently. Heavy network traffic affects the response time of all system and it consumes more energy continuously. Minimization the network traffic/by finding the shortest path from source to destination minimizes the response time of all system and also reduces the energy consumption cost. The ant colony optimization (ACO) and K-Means clustering algorithms characteristics conform to the auto-activator and optimistic response mechanism of the shortest route searching from source to destination. In this article, ACO and K-Means clustering algorithms are studied to search the shortest route path from source to destination by optimizing the Quality of Service (QoS) constraints. Resources are assumed in the active and varied IoT network atmosphere for these two algorithms. This work includes the study and comparison between ant colony optimization (ACO) and K-Means algorithms to plan a response time aware scheduling model for IoT. It is proposed to divide the IoT environment into various areas and a various number of clusters depending on the types of networks. It is noticed that this model is more efficient for the suggested routing algorithm in terms of response time, point-to-point delay, throughput and overhead of control bits.
    Mostrar el registro completo del ítem
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    48
    33
    48
    5
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Comparative Study on Ant Colony Optimization (ACO) and K-Means Clustering Approaches for Jobs Scheduling and Energy Optimization Model in Internet of Things (IoT) 

      Kumar, Sumit; Kumar-Solanki, Vijender; Kumar Choudhary, Saket; Selamat, Ali; González-Crespo, Rubén (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 03/2020)
      The concept of Internet of Things (IoT) was proposed by Professor Kevin Ashton of the Massachusetts Institute of Technology (MIT) in 1999. IoT is an environment that people understand in many different ways depending on ...
    • Multilayer Framework for Botnet Detection Using Machine Learning Algorithms 

      Ibrahim, Wan Nur Hidayah; Anuar, Syahid; Selamat, Ali; Krejcar, Ondřej; González-Crespo, Rubén (1); Herrera-Viedma, Enrique; Fujita, Hamido (IEEE Access, 2021)
      A botnet is a malware program that a hacker remotely controls called a botmaster. Botnet can perform massive cyber-attacks such as DDOS, SPAM, click-fraud, information, and identity stealing. The botnet also can avoid being ...
    • Enhancing big data feature selection using a hybrid correlation-based feature selection 

      Mohamad, Masurah; Selamat, Ali; Krejcar, Ondrej; González-Crespo, Rubén (1); Herrera-Viedma, Enrique; Fujita, Hamido (2021)
      This study proposes an alternate data extraction method that combines three well-known feature selection methods for handling large and problematic datasets: the correlation-based feature selection (CFS), best first search ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioAutorización TFG-M

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja