• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    Generalized High-Order Classes for Solving Nonlinear Systems and Their Applications

    Autor: 
    Chicharro, Francisco Israel
    ;
    Cordero, Alicia
    ;
    Garrido, Neus
    ;
    Torregrosa, Juan Ramón
    Fecha: 
    05/12/2019
    Palabra clave: 
    nonlinear systems; iterative method; convergence; efficiency; JCR; Scopus
    Revista / editorial: 
    MDPI
    Mathematics
    Citación: 
    Chicharro, F.I.; Cordero, A.; Garrido, N.; Torregrosa, J.R. Generalized High-Order Classes for Solving Nonlinear Systems and Their Applications. Mathematics 2019, 7, 1194.
    Tipo de Ítem: 
    Articulo Revista Indexada
    URI: 
    https://reunir.unir.net/handle/123456789/9624
    DOI: 
    http://dx.doi.org/10.3390/math7121194
    Dirección web: 
    https://www.mdpi.com/2227-7390/7/12/1194
    Open Access
    Resumen:
    A generalized high-order class for approximating the solution of nonlinear systems of equations is introduced. First, from a fourth-order iterative family for solving nonlinear equations, we propose an extension to nonlinear systems of equations holding the same order of convergence but replacing the Jacobian by a divided difference in the weight functions for systems. The proposed GH family of methods is designed from this fourth-order family using both the composition and the weight functions technique. The resulting family has order of convergence 9. The performance of a particular iterative method of both families is analyzed for solving different test systems and also for the Fisher’s problem, showing the good performance of the new methods.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: mathematics-07-01194.pdf
    Tamaño: 292.9Kb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    14
    92
    79
    36
    31
    76
    77
    Descargas
    0
    0
    0
    0
    0
    0
    0
    13
    67
    74
    32
    18
    24
    38

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Stability and applicability of iterative methods with memory 

      Chicharro, Francisco Israel ; Cordero, Alicia; Garrido, Neus; Torregrosa, Juan Ramón (Journal of Mathematical Chemistry, 15/03/2019)
      Based on the third-order Traub’s method, two iterative schemes with memory are introduced. The proper inclusion of accelerating parameters allows the introduction of memory. Therefore, the order of convergence of the ...
    • On the improvement of the order of convergence of iterative methods for solving nonlinear systems by means of memory 

      Chicharro, Francisco Israel ; Cordero, Alicia; Garrido, Neus ; Torregrosa, Juan Ramón (Applied Mathematics Letters, 06/2020)
      Iterative methods with memory for solving nonlinear systems have been designed. For approximating the accelerating parameters the Kurchatov's divided difference is used as an approximation of the derivative of second order. ...
    • Anomalies in the convergence of Traub‐type methods with memory 

      Chicharro, Francisco Israel ; Cordero, Alicia; Garrido, Neus; Torregrosa, Juan Ramón (Computational and Mathematical Methods, 06/08/2019)
      The stability analysis of a new family of iterative methods with memory isintroduced. This family, designed from Traub's method, allows to add memorythrough the introduction of an accelerating parameter. Hence, the speed ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja