Mostrar el registro sencillo del ítem

dc.contributor.authorArgyros, Ioannis K
dc.contributor.authorSheth, Soham M.
dc.contributor.authorYounis, Rami M.
dc.contributor.authorMagreñán, Á. Alberto
dc.contributor.authorGeorge, Santhosh
dc.date2017-12
dc.date.accessioned2019-08-20T07:33:11Z
dc.date.available2019-08-20T07:33:11Z
dc.identifier.issn2199-5796
dc.identifier.urihttps://reunir.unir.net/handle/123456789/8966
dc.description.abstractThe mesh independence principle states that, if Newton’s method is used to solve an equation on Banach spaces as well as finite dimensional discretizations of that equation, then the behaviour of the discretized process is essentially the same as that of the initial method. This principle was inagurated in Allgower et al. (SIAM J Numer Anal 23(1):160–169, 1986). Using our new Newton–Kantorovich-like theorem and under the same information we show how to extend the applicability of this principle in cases not possible before. The results can be used to provide more efficient programming methods.es_ES
dc.language.isoenges_ES
dc.publisherInternational Journal of Applied and Computational Mathematicses_ES
dc.relation.ispartofseriess;vol. 3, suple. 1
dc.relation.urihttps://link.springer.com/article/10.1007%2Fs40819-017-0398-1#citeases_ES
dc.rightsrestrictedAccesses_ES
dc.subjectNewton’s methodes_ES
dc.subjectBanach spacees_ES
dc.subjectOperator equationes_ES
dc.subjectmesh independencees_ES
dc.subjectScopuses_ES
dc.titleExtending the mesh independence for solving nonlinear equations using restricted domainses_ES
dc.typeArticulo Revista Indexadaes_ES
reunir.tag~ARIes_ES
dc.identifier.doiDOI https://doi.org/10.1007/s40819-017-0398-1


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem