Mostrar el registro sencillo del ítem

dc.contributor.authorNúñez-Valdez, Edward Rolando
dc.contributor.authorQuintana, David
dc.contributor.authorGonzález-Crespo, Rubén
dc.contributor.authorIsasi, Pedro
dc.contributor.authorHerrera-Viedma, Enrique
dc.date2018-10
dc.date.accessioned2019-01-28T09:10:59Z
dc.date.available2019-01-28T09:10:59Z
dc.identifier.issn1872-6291
dc.identifier.urihttps://reunir.unir.net/handle/123456789/7700
dc.description.abstractIn this study, we describe a recommendation system for electronic books. The approach is based on implicit feedback derived from user's interaction with electronic content. User's behavior is tracked through several indicators that are subsequently used to feed the recommendation engine. This component then provides an explicit rating for the material interacted with. The role of this engine could be modeled as a regression task where content is rated according to the mentioned indicators. In this context, we benchmark twelve popular machine learning algorithms to perform this final function and evaluate the quality of the output provided by the system. (C) 2018 Elsevier Inc. All rights reserved.es_ES
dc.language.isoenges_ES
dc.publisherInformation Scienceses_ES
dc.relation.ispartofseries;vol. 467
dc.relation.urihttps://www.sciencedirect.com/science/article/pii/S0020025518305930?via%3Dihubes_ES
dc.rightsrestrictedAccesses_ES
dc.subjectrecommender systemses_ES
dc.subjectexplicitation systemes_ES
dc.subjectimplicit feedbackes_ES
dc.subjectclassification algorithmses_ES
dc.subjectJCRes_ES
dc.subjectScopuses_ES
dc.titleA recommender system based on implicit feedback for selective dissemination of ebookses_ES
dc.typeArticulo Revista Indexadaes_ES
reunir.tag~ARIes_ES
dc.identifier.doihttp://dx.doi.org/10.1016/j.ins.2018.07.068


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem