Mostrar el registro sencillo del ítem

dc.contributor.authorNieto, Yuri
dc.contributor.authorGarcía-Díaz, Vicente
dc.contributor.authorMontenegro, Carlos Enrique
dc.contributor.authorGonzález-Crespo, Rubén
dc.date2018
dc.date.accessioned2018-07-10T15:10:04Z
dc.date.available2018-07-10T15:10:04Z
dc.identifier.issn1433-7479
dc.identifier.urihttps://reunir.unir.net/handle/123456789/6654
dc.description.abstractDecisions made by deans and university managers greatly impact the entire academic community as well as society as a whole. In this paper, we present survey results on which academic decisions they concern and the variables involved in them. Using machine learning algorithms, we predicted graduation rates in a real case study to support decision making. Real data from five undergraduate engineering programs at District University Francisco Jose de Caldas in Colombia illustrate our results. The comparison between support vector machine and artificial neural network is held using the confusion matrix and the receiver operating characteristic curve. The algorithm methods and architecture are presented.es_ES
dc.language.isoenges_ES
dc.publisherSoft Computinges_ES
dc.relation.urihttps://link.springer.com/article/10.1007/s00500-018-3064-6es_ES
dc.rightsrestrictedAccesses_ES
dc.subjectmachine learninges_ES
dc.subjectartificial neural networkes_ES
dc.subjectsupport vector machinees_ES
dc.subjectdecision makinges_ES
dc.subjectconfusion matrixes_ES
dc.subjectScopuses_ES
dc.subjectJCRes_ES
dc.titleSupporting academic decision making at higher educational institutions using machine learning-based algorithmses_ES
dc.typeArticulo Revista Indexadaes_ES
reunir.tag~ARIes_ES
dc.identifier.doihttps://doi.org/10.1007/s00500-018-3064-6


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem