• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    Expanding the applicability of the Secant method under weaker conditions

    Autor: 
    Argyros, Ioannis K
    ;
    Magreñán, Á. Alberto (1)
    Fecha: 
    09/2015
    Palabra clave: 
    secant method; banach space; majorizing sequence; divided difference; local convergence; semilocal convergence; JCR; Scopus
    Tipo de Ítem: 
    Articulo Revista Indexada
    URI: 
    https://reunir.unir.net/handle/123456789/5690
    DOI: 
    http://dx.doi.org/10.1016/j.amc.2015.06.037
    Dirección web: 
    http://www.sciencedirect.com/science/article/pii/S0096300315008188?via%3Dihub
    Resumen:
    We present a new semilocal convergence analysis for Secant method in order to approximate a locally unique solution of a nonlinear equation in a Banach space setting. Our analysis includes the computation of the bounds on the limit points of the majorizing sequences involved. Under the same computational cost on the parameters involved our convergence criteria are weaker and the error bounds more precise than in earlier studies such as (Amat and Busquier, 2003; Amat et al., in press; Argyros and Hilout, 2012; Argyros et al., 2014; Argyros and Magrenan, 2014, 2015; Dennis, 1971; Ezquerro et al., 2000; Ortega and Rheinboldt, 1970; Potra and Ptak, 1984; Schmidt, 1978). Numerical examples are also presented to illustrate the theoretical results obtained in this study. (C) 2015 Elsevier Inc. All rights reserved.
    Mostrar el registro completo del ítem
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    Vistas
    0
    0
    0
    0
    0
    0
    32
    147
    60
    24
    17
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Local convergence comparison between frozen Kurchatov and Schmidt–Schwetlick–Kurchatov solvers with applications 

      Moysi, Alejandro; Argyros, Michael I; Argyros, Ioannis K; Magreñán, Á. Alberto (1); Sarría, Íñigo (1); González Sánchez, Daniel (Journal of Computational and Applied Mathematics, 04/2022)
      In this work we are going to use the Kurchatov–Schmidt–Schwetlick-like solver (KSSLS) and the Kurchatov-like solver (KLS) to locate a zero, denoted by x∗ of operator F. We define F as F:D⊆B1⟶B2 where B1 and B2 stand for ...
    • Extending the domain of starting points for Newton's method under conditions on the second derivative 

      Argyros, Ioannis K; Ezquerro, J A; Hernández-Verón, M A; Magreñán, Á. Alberto (1) (Journal of Computational and Applied Mathematics, 10/2018)
      In this paper, we propose a center Lipschitz condition for the second Frechet derivative together with the use of restricted domains in order to improve the domain of starting points for Newton's method. In addition, we ...
    • Optimizing the applicability of a theorem by F. Potra for Newton-like methods 

      Magreñán, Á. Alberto (1); Argyros, Ioannis K (Applied Mathematics and Computation, 09/2014)
      We present a new sufficient semilocal convergence conditions for Newton-like methods in order to approximate a locally unique solution of an equation in a Banach space setting. This way, we expand the applicability of these ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioAutorización TFG-M

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja