Improved local convergence analysis of the Gauss-Newton method under a majorant condition
Autor:
Argyros, Ioannis K
; Magreñán, Á. Alberto
Fecha:
03/2015Palabra clave:
Revista / editorial:
Computational Optimization and ApplicationsTipo de Ítem:
Articulo Revista IndexadaResumen:
We present a local convergence analysis of Gauss-Newton method for solving nonlinear least square problems. Using more precise majorant conditions than in earlier studies such as Chen (Comput Optim Appl 40:97-118, 2008), Chen and Li (Appl Math Comput 170:686-705, 2005), Chen and Li (Appl Math Comput 324:13811394, 2006), Ferreira (J Comput Appl Math 235:1515-1522, 2011), Ferreira and Goncalves (Comput Optim Appl 48:1-21, 2011), Ferreira and Goncalves (J Complex 27(1):111-125, 2011), Li et al. (J Complex 26:268-295, 2010), Li et al. (Comput Optim Appl 47:1057-1067, 2004), Proinov (J Complex 25:38-62, 2009), Ewing, Gross, Martin (eds.) (The merging of disciplines:new directions in pure, applied and computational mathematics 185-196, 1986), Traup (Iterative methods for the solution of equations, 1964), Wang (J Numer Anal 20:123-134, 2000), we provide a larger radius of convergence; tighter error estimates on the distances involved and a clearer relationship between the majorant function and the associated least squares problem. Moreover, these advantages are obtained under the same computational cost.
Este ítem aparece en la(s) siguiente(s) colección(es)
Estadísticas de uso
Año |
2012 |
2013 |
2014 |
2015 |
2016 |
2017 |
2018 |
2019 |
2020 |
2021 |
2022 |
2023 |
2024 |
Vistas |
0 |
0 |
0 |
0 |
0 |
0 |
42 |
112 |
47 |
23 |
32 |
38 |
69 |
Descargas |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
Ítems relacionados
Mostrando ítems relacionados por Título, autor o materia.
-
Local and Semi-local convergence for Chebyshev two point like methods with applications in different fields
Argyros, Christopher I.; Argyros, Michael I; Argyros, Ioannis K; Magreñán, Á. Alberto; Sarría, Íñigo (Journal of Computational and Applied Mathematics, 2023)The convergence is developed for a large class of Chebyshev-two point-like methods for solving Banach space valued equations. Both the local as well as the semi-local convergence is provided for these methods under general ... -
Local convergence comparison between frozen Kurchatov and Schmidt–Schwetlick–Kurchatov solvers with applications
Moysi, Alejandro; Argyros, Michael I; Argyros, Ioannis K; Magreñán, Á. Alberto ; Sarría, Íñigo ; González Sánchez, Daniel (Journal of Computational and Applied Mathematics, 04/2022)In this work we are going to use the Kurchatov–Schmidt–Schwetlick-like solver (KSSLS) and the Kurchatov-like solver (KLS) to locate a zero, denoted by x∗ of operator F. We define F as F:D⊆B1⟶B2 where B1 and B2 stand for ... -
Ball comparison between frozen Potra and Schmidt-Schwetlick schemes with dynamical analysis
Argyros, Michael I; Argyros, Ioannis K; González, Daniel; Magreñán, Á. Alberto; Moysi, Alejandro; Sarría, Íñigo (Computational and Mathematical Methods, 2021)In this article, we propose a new research related to the convergence of the frozen Potra and Schmidt-Schwetlick schemes when we apply to equations. The purpose of this study is to introduce a comparison between two solutions ...