• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    Optimizing the applicability of a theorem by F. Potra for Newton-like methods

    Autor: 
    Magreñán, Á. Alberto (1)
    ;
    Argyros, Ioannis K
    Fecha: 
    09/2014
    Palabra clave: 
    Newton-like method; banach space; semilocal convergence; majorizing sequence; divided difference; Frechet derivative; JCR; Scopus
    Tipo de Ítem: 
    Articulo Revista Indexada
    URI: 
    https://reunir.unir.net/handle/123456789/5608
    DOI: 
    http://dx.doi.org/10.1016/j.amc.2014.05.078
    Dirección web: 
    http://www.sciencedirect.com/science/article/pii/S0096300314007656?via%3Dihub
    Resumen:
    We present a new sufficient semilocal convergence conditions for Newton-like methods in order to approximate a locally unique solution of an equation in a Banach space setting. This way, we expand the applicability of these methods in cases not covered in other studies such as Dennis (1971) [12], Ezquerro et al. (2000, 2010) [13,14], Kornstaedt (1975) [18], Potra and Ptak (1984) [24], Potra (1985, 1979, 1982, 1981, 1984) [23,25,26,27,28], Proinov (2010) [29], Schmidt (1978) [31] or Yamamoto (1987) [32]. The advantages of our approach also include a tighter convergence analysis under the same computational cost. Applications, where the older convergence criteria are not satisfied but the new convergence criteria are satisfied are also given in this study. (C) 2014 Elsevier Inc. All rights reserved.
    Mostrar el registro completo del ítem
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    Vistas
    0
    0
    0
    0
    0
    0
    42
    101
    72
    41
    22
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Local convergence comparison between frozen Kurchatov and Schmidt–Schwetlick–Kurchatov solvers with applications 

      Moysi, Alejandro; Argyros, Michael I; Argyros, Ioannis K; Magreñán, Á. Alberto (1); Sarría, Íñigo (1); González Sánchez, Daniel (Journal of Computational and Applied Mathematics, 04/2022)
      In this work we are going to use the Kurchatov–Schmidt–Schwetlick-like solver (KSSLS) and the Kurchatov-like solver (KLS) to locate a zero, denoted by x∗ of operator F. We define F as F:D⊆B1⟶B2 where B1 and B2 stand for ...
    • Extending the domain of starting points for Newton's method under conditions on the second derivative 

      Argyros, Ioannis K; Ezquerro, J A; Hernández-Verón, M A; Magreñán, Á. Alberto (1) (Journal of Computational and Applied Mathematics, 10/2018)
      In this paper, we propose a center Lipschitz condition for the second Frechet derivative together with the use of restricted domains in order to improve the domain of starting points for Newton's method. In addition, we ...
    • A study on the local convergence and the dynamics of Chebyshev–Halley–type methods free from second derivative 

      Argyros, Ioannis K; Magreñán, Á. Alberto (1) (Numerical Algorithms, 01/2016)
      We study the local convergence of Chebyshev-Halley-type methods of convergence order at least five to approximate a locally unique solution of a nonlinear equation. Earlier studies such as Behl (2013), Bruns and Bailey ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioAutorización TFG-M

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja