• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    Stability analysis of a parametric family of iterative methods for solving nonlinear models

    Autor: 
    Cordero, Alicia
    ;
    Gutiérrez, José M
    ;
    Magreñán, Á. Alberto
    ;
    Torregrosa, Juan Ramón
    Fecha: 
    07/2016
    Palabra clave: 
    stability; nonlinear problems; parameter space; iterative methods; basins of attraction; complex dynamics; JCR; Scopus
    Revista / editorial: 
    Applied Mathematics and Computation
    Tipo de Ítem: 
    Articulo Revista Indexada
    URI: 
    https://reunir.unir.net/handle/123456789/5332
    DOI: 
    https://doi.org/10.1016/j.amc.2016.03.021
    Dirección web: 
    http://www.sciencedirect.com/science/article/pii/S0096300316302144?via%3Dihub
    Resumen:
    A one-parametric family of fourth-order iterative methods for solving nonlinear systems is presented, proving the fourth-order of convergence of all members in this family, except one of them whose order is five. The methods in our family are numerically compared with other known methods in terms of the classical efficiency index (order of convergence and number of functional evaluations) and in terms of the operational efficiency index, which also takes into account the total number of product-quotients per iteration. In order to analyze its stability and its dynamical properties, the parameter space for quadratic polynomials is shown. The stability of the strange fixed points is studied in this case. We note that even for this particular case, the family presents a very interesting dynamical behavior. The analysis of the parameter plane allows us to find values for the involved parameter with good stability properties as well as other values with bad numerical behavior. Finally, amongst the first ones, there is a special value of the parameter related to a fifth-order method in the family. (C) 2016 Elsevier Inc. All rights reserved.
    Mostrar el registro completo del ítem
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    46
    113
    60
    26
    44
    32
    96
    57
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Real qualitative behavior of a fourth-order family of iterative methods by using the convergence plane 

      Magreñán, Á. Alberto ; Cordero, Alicia; Gutiérrez, José M; Torregrosa, Juan Ramón (Mathematics and Computers in Simulation, 11/2014)
      The real dynamics of a family of fourth-order iterative methods is studied when it is applied on quadratic polynomials. A Scaling Theorem is obtained and the conjugacy classes are analyzed. The convergence plane is used ...
    • A new fourth-order family for solving nonlinear problems and its dynamics 

      Cordero, Alicia; Feng, Licheng; Magreñán, Á. Alberto ; Torregrosa, Juan Ramón (Journal of Mathematical Chemistry, 03/2015)
      In this manuscript, a new parametric class of iterative methods for solving nonlinear systems of equations is proposed. Its fourth-order of convergence is proved and a dynamical analysis on low-degree polynomials is made ...
    • Stability study of eighth-order iterative methods for solving nonlinear equations 

      Cordero, Alicia; Magreñán, Á. Alberto ; Quemada, Carlos; Torregrosa, Juan Ramón (Journal of Computational and Applied Mathematics, 01/2016)
      In this paper, we study the stability of the rational function associated to a known family of eighth-order iterative schemes on quadratic polynomials. The asymptotic behavior of the fixed points corresponding to the ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja