Mostrar el registro sencillo del ítem

dc.contributor.authorGarcía-Olivo, Martín
dc.contributor.authorGutiérrez, José M
dc.contributor.authorMagreñán, Á. Alberto (1)
dc.date2017-07
dc.date.accessioned2017-08-07T12:24:39Z
dc.date.available2017-08-07T12:24:39Z
dc.identifier.issn1879-1778
dc.identifier.urihttps://reunir.unir.net/handle/123456789/5326
dc.description.abstractIn this paper we explore some properties of the well known root-finding Chebyshev’s method applied to polynomials defined on the real field. In particular we are interested in showing the existence of extraneous fixed points, that is fixed points of the iteration map that are not root of the considered polynomial. The existence of such extraneous fixed points is a specific property in the dynamical study of Chebyshev’s method that does not happen in other known iterative methods as Newton’s or Halley’s methods. In addition, in this work we consider other dynamical aspects of the method as, for instance, the Feigenbaum bifurcation diagrams or the parameter plane.es_ES
dc.language.isoenges_ES
dc.publisherJournal of Computational and Applied Mathematicses_ES
dc.relation.ispartofseries;vol. 38
dc.relation.urihttp://www.sciencedirect.com/science/article/pii/S0377042716300966?via%3Dihub#!es_ES
dc.rightsclosedAccesses_ES
dc.subjectChebyshev’s methodes_ES
dc.subjectnonlinear equationses_ES
dc.subjectiterative methodses_ES
dc.subjectreal dynamicses_ES
dc.subjectJCRes_ES
dc.subjectScopuses_ES
dc.titleA first overview on the real dynamics of Chebyshev's methodes_ES
dc.typeArticulo Revista Indexadaes_ES
reunir.tag~ARIes_ES
dc.identifier.doihttps://doi.org/10.1016/j.cam.2016.02.040


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem