Mostrar el registro sencillo del ítem

dc.contributor.authorLotfi, T
dc.contributor.authorMagreñán, Á. Alberto
dc.contributor.authorMahdiani, K
dc.contributor.authorRainer, J Javier
dc.date2015-02
dc.date.accessioned2017-04-19T15:51:18Z
dc.date.available2017-04-19T15:51:18Z
dc.identifier.issn1873-5649
dc.identifier.urihttps://reunir.unir.net/handle/123456789/4787
dc.description.abstractFirst, it is attempted to derive an optimal derivative-free Steffensen-King's type family without memory for computing a simple zero of a nonlinear function with efficiency index 4(1/3) approximate to 1.587. Next, since our without memory family includes a parameter in which it is still possible to increase the convergence order without any new function evaluations. Therefore, we extract a new method with memory so that the convergence order rises to six without any new function evaluation and therefore reaches efficiency index 6(1/3) approximate to 1.817. Consequently, derivative-free and high efficiency index would be the substantial contributions of this work as opposed to the classical Steffensen's and King's methods. Finally, we compare some of the convergence planes with different weight functions in order to show which are the best ones.es_ES
dc.language.isoenges_ES
dc.publisherApplied Mathematics and Computationes_ES
dc.relation.ispartofseries;vol. 252
dc.relation.urihttp://www.sciencedirect.com/science/article/pii/S0096300314016877
dc.rightsrestrictedAccesses_ES
dc.subjectmultipoint iterative methodses_ES
dc.subjectSteffensen's methodes_ES
dc.subjectKing's familyes_ES
dc.subjectderivative-freees_ES
dc.subjectefficiency indexes_ES
dc.subjectJCRes_ES
dc.subjectScopuses_ES
dc.titleA variant of Steffensen-King's type family with accelerated sixth-order convergence and high efficiency index: Dynamic study and approaches_ES
dc.typeArticulo Revista Indexadaes_ES
reunir.tag~ARIes_ES
dc.identifier.doihttps://doi.org/10.1016/j.amc.2014.12.033


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem